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PREFACE TO SECOND DRAFT

The ECCP course, entitled "The Man-Made World", is intended as a part
of the cultural curriculum. It is a course for embryo journalists, businessmen,
lawyers, medical doctors, executives, teachers, and in fact for all citizens who
will take part in guiding the currents of our society. The authors are engineers,
scientists, and educators who are convinced that the world is increasingly shaped
by technical accomplishments. Indeed, the world we live in is largely man-made.
Within the short space of only several dozen years man has discovered more
about the world in which he lives than he had known from all the preceding genera-
tions since the beginning. With this knowledge came a new boldness. Man now
has the faith that he can shape his own environment and that he need not leave his
destiny to chance. His knowledge, ingenuity, and vigor give him the power to
change the world toward what he wants it to be, rather than having to accept it as
it is. This is the engineering viewpoint, for the engineer thinks of the world in
terms of how it can be manipulated to serve man.

Resources used to create the man-made world are diverse. There are
concepts, physical principles, modes of thinking, and the much heralded "scientific
method" as well as arts, skills, and inspiration. This course brings these into
focus by reference to vital technical accomplishments, but the course also strives
to demonstrate the relevance of these resources for biology, economics, sociology,
business, communication, psychology, and even the arts and humanities. In empha-
sizing the utility of precise thought and language the course does not overlook the
importance of procedures and techniques for achieving concrete goals, nor the
importance of value judgments in deciding "what to do" from the vast number of
possibilities. Through this broad approach, the course aims to help students
develop insights useful in coping with social, economic, political as well as purely
technical problems.

The accompanying text reflects revisions of an earlier version along the
lines indicated by the 1965-66 pilot trial in five high schools. This revised text,
although nearer to the ultimate goal, will undoubtedly require further revision as
a result of experience during the 28-school, 1966-67 trial. It is expected that
students and teachers from these schools will make significant contributions to
this revision.
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An unusual combination of academic interests and professional viewpoints
is being brought to bear on the creation of this course. So that it can be made
to appeal to a broad spectrum of the student body and, at the same time, be
academically authentic, the Commission on Engineering Education has brought
together college professors, high school science teachers, engineers, and
scientists. The Polytechnic Institute of Brooklyn, the Massachusetts Institute
of Technology, and the Johns Hopkins University have been major contributors
in cooperation with scientists and engineers from Bell Telephone Laboratories
and the International Business Machines Corporation. Listed on the following
page are the names of individuals who have participated to date.

E. E. DAVID, JR.

J. G. TRUXAL
Boulder, Colorado
August, 1966

An additional year of test in 27 schools has resulted in some changes in
the content and approach. These changes have not materially altered the direction
or emphasis of the course, but do reflect the suggestions of the 1966-67 trial
teachers. There are more references to the effects of technology on Society, and
more examples of how the concepts which are taught in the course can be used in
areas of endeavor other than engineering.

E. E. DAVID, JR.

J. G. TRUXAL

Polytechnic Institute of Brooklyn
Brooklyn, New York
August 1967
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TO THE STUDENTS

From time to time during this school year you will be asked various
questions about your reasons for taking this course, how effective the text has
been, how important the laboratory exercises are, etc. This is because the authors
want to know what you are getting out of the course. It is only fair, therefore, that
you know in advance why the course was written, and what it is hoped you will "get
out of" the course.

The following quotation from Theodore J. Gordon of the Rand Corporation in
the magazine ARCHITECTURAL DESIGN, Feb., 1967 might help you understand
the reasons for developing this course.

"As scientific research progresses we gain greater control over our environ-
ment. Yet the power of these tools which give us this control, in the hands of an un-
prepared or indifferent people, faced with social pressures of unprecedented magni-
tude, may result not in greater control but self-extinction."

As citizens of both the 20th and 21st centuries, you will need to gain an in-
sight into the nature of the tools and processes which have affected the society in
which you now live and will help to shape the society in which you will be living.
"Only through this kind of projection can we hope to avoid social calamities which
may result from the sudden emergence of powerful mechanisms of control without
previous preparation or understanding of the implications of their use. Prediction-
making is clearly part of our everday life." A few of the effects of prediction-
making devices are cited.

"Computers are used during political elections to predict results, based on
a small (but carefully selected) sampling. In rocketry, a computer technique known
as "Monte Carlo" is used to predict the probable .eath of a rocket. Operations
analysis and operations research are very powerful tools. The technical, military,
commercial, social and political planning of our world is becoming increasingly re-
lated to prediction-making."

During the 1970's (while you are still in college) while air traffic increases,
the danger of mid-air collisions will be reduced because by the use of accurate
sensing devices, coupled to computers, air traffic control will develop positive ant]
predictive tracks on all aircraft.

You may have already noted a decrease in the use of cash as the credit card
becomes more widespread; this will continue until there will be a direct link from
stores to banks in order to check credit and record transactions.

At the present time teaching machines are in a minority of school class-
rooms, but by 1975 there will be widespread use of simple teaching machines.

As factories have become more automated there has been an influx of white
collar workers to offices. Automation of office work and services will progress
to the point that there will be a 25% displacement of the work force (though some
economists think that these people will be absorbed by the general growth of business).

Libraries will become automated, looking up and reproducing copy on demand.

vii
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There will be automated looking up of legal information, automatic language trars-
lation (with correct grammar) and automated rapid transit for metropolitan areas.

At present we hear the weather reports given as odds, "there is a 40%
chance of scattered showers this afternoon", by 1975 there will be accurate, reliable
weather forecasts.

Other predictions suggest that, in the 1980's (when you are in your 301s)
there will be:

Automatic decision-making at management level for industrial and
national planning.

Radar for the blind, servo-mechanical arms and legs, etc.

Automated interpretation of medical symptons.

Widespread use of robot services for refuse collection, household chores,
sewer inspections, etc.

In this course you will not learn how to design the equipment or processes
which will make the above predictions come true, but rather you will learn some-
thing about such devices and processes so that as a citizen you might make wise
decisions regarding them. For example, you will learn about logic and how logic
can be represented in simple electric circuits and how many of these simple cir-
cuits can be combined to make a large computer. By actually programming a
simple computer, you will learn something about how man communicates with
machines. Understanding the process of decision-making based on a systematic
procedure (algorithm) will help you in many areas of your personal and professional
life. You will learn about the values and pitfalls of predictions based on models.
The concept of feedback and how it controls what you do physically and intellectually
as well as how it is used to control "automated" devices and processes is one which
should be understood by all citizens today. Amplification of man's meager energy is
the process by which our civilization has developed from the time of the cave man to
the space flights of today and tomorrow. The understanding of the concept of stabil-
ity and its effect on economic, social and medical problems as well as on bridges
and autos going around curves is important today and will continue to be important
tomorrow.

There are many engineering concepts which can be understood by all people
who are interested in them. Many are in this course, many have been omitted owing
to the lack of time and space in the school program. If you understand the concepts
presented in this course, and apply them today, and tomorrow, your time will have
been well spent.

viii
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Chapter A -1

INTRODUCTION
Some people say that the thing that distinguishes man from the animals is

his use of tools to help him cope with nature and to live comfortably. Regard-
less of the truth of this idea, tools are important and apes do not have auto-
mobiles, bulldozers, or even picks and shovels. However, as important as
tools are, man's language is perhaps even more important. Language is the
key to communication between men, and it has permitted man to accumulate
knowledge over the centuries so that each generation can stand on the shoulders
of all earlier ones.

Basic to language are symbols; among them, numbers and letters.
Numbers stand for a property of a collection of objects; namely, "how many".
Letters stand for the sounds of speech. All symbols stand for, or "symbolize",
something; and man uses them in his thought and communication. Among man's
tools, those that deal with symbols, such as printing presses, typewriters, and
copying machines, have been particularly influential. "The pen is mightier than
the sword" reflects this importance of symbols and language.

During the past 25 years, the ultimate tool for dealing with symbols has
emerged; it is the electronic digital computer. Bridging the gap between thought
and action, computers not only reproduce and print letters, numbers, and draw-
ings as presses and copying machines do, but they can change and manipulate
these symbols. Manuscripts can be edited, word counts compiled, equations
solved, and pictures rearranged. Computers can handle an almost unlimited
range of symbols, and so can engage in "computer make-believe," commonly
called simulation. Auto traffic flow, missile flight, and ballet choreography
can be recreated and followed through in a computer, and valuable experience
obtained, all without actual automobiles, missiles, or dancers. Computers
keep track of airline reservations, stock transactions, telephone calls and
charges, and the whereabouts of railroad cars. Such services are the key to
keeping the increasing complexity of our society from making us all into robots.
Computers are capable of providing us with the mass-produced, yet individ-
ualized product, and with individual treatment for each person in a mass soci-
ety, providing of course we are wise enough to use computers in that way. It
is not too much to say that you, no matter who you are, have a computer in
your future.

Where did computers come from, and how were they created? They
began with the idea of using mechanical devices to aid man in performing
arithmetic. This notion can be traced back thousands of years. The first
step was the idea of numbers and of counting, using objects like fingers and
stones. Because men had ten fingers it was natural that the number ten had
special importance, probably even to prehistoric men. The development of
methods to express numbers greater than ten took many centuries. The
"positional" notation(units, tens, hundreds, etc.) expressed by the positions
of numerals in a number and the use of a special symbol for zero were key
steps in the evolution of our own number system. Hindu-Arabic numerals
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appeared about the fourteenth century, but our numbers and the rules for
using them were not completely accepted in Europe until a few centuries ago.

The origin of the abacus is lost in antiquity; it may be the first widely
used computing device. Computers of some kind were apparently built by the
ancient Greeks. John Napier (the inventor of logarithms) developed a device
for multiplication about 1617. The first slide rule, based on adding logarithms
for multiplication, appeared shortly afterward. Blaise Pascal in 1642 built a
stylus-operated adding machine with numbered wheels geared together, in much
the same way that automobile mileage indicators are, so that the "carry" digit
from one column could be automatically added to the next; this was a particularly
important development. Samuel Morland had a machine based on the same
principle which could subtract as well as add. In 1694 Gottfried Wilhelm von
Leibnitz introduced still another machine which also multiplied (by repeated
addition), divided, and extracted roots.

From an entirely different kind of endeavor came an idea which was to
be critical in the development of modern computers. In the seventeenth century
the Frenchman, Jacquard, developed a loom which could automatically weave
cloth in a pattern which was specified by information from punched cards fed to
the loom one after another. If the pattern of holes in punched cards could con-
trol a loom, they could also control an arithmetic calculator, causing it to carry
out a planned sequence of arithmetic operations in a long computation. This idea
occurred to Charles Babbage, a mathematics professor from Cambridge Uni-
versity. In 1820, he had built a small model of a "difference engine" which
evaluated polynomials by a method using differences among a series of numbers.
About 1833 he proposed to build an even more elaborate "analytical engine" which
had all of the essential features of modern electronic computers. It was to have a
"store" or memory unit which was to hold numbers and the results of doing arith-
metic on these numbers; a"mill" , or arithmetic unit, which was to do the necessary
succession of steps of adding, subtracting, multiplying, and dividing; and a
"control" which translated and carried out instructions from the punched cards.

Lord Byron's daughter, the Countess of Lovelace, had always been fas-
cinated by mathematics, and when she heard of Babba,ge's ideas she was enthu-
siastic about helping him fulfill this ambition to construct the machine which
"weaves algebraic patterns just as the Jacquard loom weaves flowers and leaves."
Together, she and Babbage conceived all sorts of wild fund-raising schemes. He
got some financial backing from the British government, but the necessary gears
and other mechanisms proved to be beyond the technology of the times. Only a
very few artisans of Babbage's days could have made them accurately enough.
Even so, it is possible that his grand plan for the "analytical engine" might have
actually succeeded if he had based it on the binary instead of the decimal number
system.

Sad to say, Babbage's work was forgotten. (fit was "discovered" only
ometime after the modern computer was well on the way). A new start was made

by Howard Aiken of Harvard University and George Stibitz of the Bell Telephone
Laboratories in the late 1930's when they developed automatic calculators using
telephone relays. These were completed in the early 1940's.
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The first automatic computer based on electronic rather than mechan-
ical or electro-mechanical technology was the ENIAC (Electronic Numerical
Integrator and Computer) built at the University of Pennsylvania. It was con-
ceived and built by John Mauch ly, who had been a professor of physics, and
J. Presper Eckert, Jr., a graduate student of electrical engineering. Together
they proposed, in 1943, to build an electronic digital computer to replace the
huge "differential analyzer" at the University of Pennsylvania which was being
used during the second World War for military purposes. This computer was
completed in 1945. It could add or multiply two numbers in a fraction of a
second, but it took tremendous effort just to keep it working. ENIAC had some
18,000 vacuum tubes and they generated an enormous amount of heat which had
to be carried away by fans and air-conditioning. The computer did not melt but
it was always potentially a furnace.

The work of Eckert and Mauch ly was elaborated further by the mathe-
matician, John von Neumann. The ENIAC had to be rewired for each specific
calculation; if another were to be done, extensive and tedious rewiring of a plug
board had to be done. In a series of reports in 1945 and 1946 von Neumann and
his colleagues presented the design of a computer which could use a program
stored in its own memory and which could be changed without rewiring. The
first working stored-program computers were demonstrated at about the same
time in both the United States and Britain, in 1949. The first commercial elec-
tronic computer was the Eckert-Mauchly UNIVAC, put on the market in 1950.

The stored program concept was a critical one. It meant that a series
of instructions could be stored in the computer memorl, in the same way that
numerical data could. A program of instructions could, therefore, make modi-
fications in another program, or even in another part of itself. A program could
then be designed to modify itself automatically during the course of a compu-
tation in a way which depended upon the intermediate results which could not have
been predicted before the computer started to work on the problem. The stored
program idea also meant that the same computer could be used at various times
on many different classes of problems without changing the wiring of the computer
itself. A computer could now truly be "general purpose."

A digital computer acts fundamentally as a mechanism which transforms
information. It takes sets of numbers, letters, or other symbols, processes
them according to sets of rules and gives its results as other sets of numbers,
letters, etc. Critical to the concept of modern computing is the representation
of all information as two-valued (binary) signals. In effect each symbol in a
digital computer is represented by a series of signals which can have only two
possible values. When numbers are stored in the computer they are stored in
sets of devices each of which can be in one of only two states, which we can think
of as "off" or "on". Often, for example, a number is "remembered" by putting
it into the form of a series of "spots" on magnetic tape; each spot location may be
magnetized in either one of two directions.

Constructing a computer with "on" or "off" devices and signals has one
great advantage. It is that circuits can be designed to handle these much more
simply and surely than if the signals had a wide range of values. These circuits
are often called "switching or logic circuits" (because switches are commonly

A-1.3



www.manaraa.com

either on or off just as logical propositions can be either true or false).

Modern electronic computers started with the realization that the elec-
tron flow in vacuum tubes, which had originally been developed for radios,
could be switched on and off. Vacuum tube computers were, by our present
standards, bulky, slow, and unreliable, but they did work and they handled
problems with speeds which had not been possible before them. Computations
which had required months took only minutes. Vacuum tubes made automatic
computing practical. Nevertheless, the first electronic computer, ENIAC,
with its 18,000 tubes, weighed 30 tons and took up 1500 square feet of floor
space. Today, an equally capable computer could easily be fitted into a cabinet
the size of a 21" TV set. What advances have made this possible?

During the 1950's two inventions, the transistor and the magnetic core
memory, changed computers to almost as great an extent as they had earlier
been changed by the exploitation of vacuum tubes.

Transistors are far smaller than vacuum tubes. They use less power
and therefore generate less heat. They are more reliable and the electrons which
flow in them can be switched on and off much more quickly. Transistors are
examples of "solid state" devices, in which the flow of electrons in solid materi-
al can be controlled just as electron flow in a vacuum tube can be controlled.
The material most commonly used for transistors is silicon (the main ingredi-_
ent in sand) which is artificially grown in large crystals and then sliced into very
small pieces.

The magnetic cores used in the memories of computers are minute
doughnut-shaped rings, usually made of a magnetic ceramic material called fer-
rite. A typical core is smaller than the size of a printed "o" on this page. In
a computer memory millions of cores may be used. Typically, they are woven
into a sort of cloth or mesh made of small wires. By sending currents through
selected wires of this mesh it is possible to magnetize a chosen core with one
polarity or the other. In this way a core can "remember" the direction of the
currents last sent through the wires. The first electronic computers used vacu-
um tubes, switched "on" and "off", as memory elements. Magnetic cores were
more reliable, less costly, and occupied less space. They have become the
standard method of constructing "memories" in today's computers.

More recent developments make it possible to create and connect to-
gether on a single tiny "chip" of silicon, measuring only a tenth of an inch a-
cross, dozens or hundreds of components, each of which is equivalent to one
transistor. These "integrated" circuits will make it possible to build computers
of enormous logical capacity, reliability, and complexity cheaply and in very
little space.

The switching time of some of the latest computer circuits is measured
in "nanoseconds". A nanosecond is one billionth of a second. There are as many
nanoseconds in one second as there are seconds in 32 years. In one nanosecond
light travels about twelve inches. Thus, today, it is important for a computer
designer to take into account the time that it takes to send electrical signals
over a wire from one part of the computer to another, even though these signals
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travel at nearly the velocity of light!

With all these developments has come the possibility of performing
computations at negligible cost. Before electronic computers existed it cost
about $30, 000 to make one million calculations. Now the same number of compu-
tations cost only 30 cents. It will be even less in the future.

In principle, present th,.y electronic computers can do nothing which
could not be done by Babbage's "analytical engine", had it been built. But there
is an enormous difference, between being able to do a computation "in principle"
and actually doing it at a reasonable cost and at a speed which gives the answer
quickly enough that it can be useful. There are now thousands of menial tasks
which are done routinely by computers which would not have been done at all a
decade ago. The computer is the contemporary counterpart of the steam engine
which initiated the industrial revolution. The steam engine was the first econo-
mical way to convert the energy stored in coal to a form useful for production.
Information is a commodity which is no less tangible than energy. Computers
are the first economical way to process and manipulate information. Jast as
our ability to control energy can be used or misused it will be possible to use,
wisely or frivolously, our ability to manipulate information.

The impact on our society of the computer, for good or evil, will be lim-
ited only by our imagination and our sense of responsibility. Some of the things
they do already were mentioned at the beginning of this introduction. The word
"they" may be a bit misleading, for we must remember that it is human beings
who tell computers what to do. If we can understand how to solve a problem by
devising an appropriate set of rules and procedures then we can present these
to a computer. The computer can then carry out the necessary individual steps
with lightning speed. The result will only be as correct as the instructions we
have given. We may find ourselves in the awkward position of a newly- com-
missioned army officer whose men obey him to the letter. If he omits a neces-
sary command, or substitutes one for another by accident, or has no plan of
action, chaos will result. When people speak to each other they may say, "You
know what I mean". This, however, is not an appropriate computer command;
a computer must be told explicitly.

The computer makes it impossible to substitute sloppy thinking or mere
talk or bluff for a specific set of directions. The computer forces us to look at
the consequences of our assumptions. If we do not like the results we have only
ourselves to blame -- just as the new officer does.

The importance of the computer to society is hard to overstate. There
is little doubt that we will become (if we are not already) a computerized society
just as we have been for many years a mechanized society. We also believe
that this should not be regretted or avoided. Computers give the promise of
lifting from us the burden of routine and dulling mental labor. They promise
also to give us the information necessary to make human decisions in an en-
lightened way. However they are used, they are going to be a major force in
the world. It seems likely that soon almost everyone will be using computers
for their own purposes.
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We are not forced to use automobiles and airplanes to get where we
want to go, yet many of us find it desirable to do so -- if only to get to a vaca-
tion spot where we can hike or swim or participate in strenuous sports. Simi-
larly we shall not be forced to use computers, but most of us will, if only to free
ourselves for strenuous but challenging and productive intellectual activity. The
very real dangers of an uncontrolled automobile do not make us give up driving.
The real dangers of unthinkingly accepting every "answer" reported by a computer
will not make us give up computers.

Even if we admit the great importance of computers in our present and
future society, why should we talk about them in this text which deals with engi-
neering concepts and why do we talk about computers before we mention other
topics? There are several reasons.

In ancient days only a limited number of people could read or write.
Those who could occupied a special place in society, keeping official records
and interpreting the law. Now we assume that every educated person can write
and read and no special exalted position is given to those who can. At present,
only a limited number of people can program a computer. They often act as a
sort of "middlemen", and take the problems of scientists, engineers, business-
men and others and put them into languages which computers can understand.
Development of newer, simpler computer languages will make computers more
directly accessible to the people who can use them. In the future fewer and fewer
people will be unable to communicate problems to a computer. No longer will
the computer be an instrument clouded in mystery, about which a few elite from
time to time make statements which are incomprehensible and therefore frighten-
ing to the majority of the population. The day of the "high priests" of computers
is coming to an end. Scribes had their value only when the average citizen could
not read or write.

The computer is a tool which can be understood. It is more important for
the high school graduate to understand the computer than his automobile, for the
citizenry will ultimately determine how computers will be used to shape our soci-
ety.

The computer represents an outstanding example of the application of
ideas to practical goals; it thus serves as an unusually good example of what
engineering is all about. Who could have dreamed that the computer would pro-
vide a bridge between the abstract logic of the ancient philosophers and the prac-
tical needs of the industrial society of our century?

Computers also furnish a perfect example of how a complex man-made
mechanism is synthesized by first combining small elements into larger units.
By understanding each stage of this process we shall be able to understand the
final result despite its apparent complexity. Engineering design is typified by
the assembly of subunits into a single result.

One very convenient way of describing problem solutions in a way appro-
priate for programming on a computer is by "flow charts". These diagrams make
it easy to organize one's thoughts about a problem in a form easy to visualize.
Because flow charts are a convenient tool for the other parts of this text it is
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natural to mention them here first.

A final reason for our talking about computers first is that no mathe-
matical background is needed. No complex equations have to be solved. All
that is required is that the reader be willing to take a fresh look at what
numbers are and how he adds and subtracts them. No background in physics
is required. The student need only be able to trace paths along wires to see if
a path exists from one part of a computer circuit to another.

In our man-made world there will be a partnership between man and his
computers. In this partnership each party should perform the activity to which
it is best suited. Man is good at organizing ideas, at invention, at making as-
sociations among apparently unrelated notions, and at recognizing patterns and
ignoring irrelevant details. He is creative, unpredictable, capricious and acts
on hunches, but he is sensitive to human values.

The computer is almost exactly what man is not. It gives its undivided
attention to unlimited and intricate detail, it is immune to distraction, boredom,
and fatigue. It needs to be told only once and it then remembers perfectly until
it is commanded to forget; it then forgets, instantly and absolutely. It is precise,
reliable, emotionless, and never complains.

Men are not machines and machines are not men. Each can do what the
other cannot. The shortcomings of one are complemented by the strength of the
other. The potential of such a partnership is greater than the sum of its parts.
But since computers will not understand us it is up to us to understand them.

There are at least two paths to studying and understanding computers.
One is to learn how to use computers; the other is to learn what is inside a
computer. This course combines these approaches. In the next three chapters,
we study the fundamental circuits of computers and see how they are related to
logical thought . We see too how to organize many individual circuits to form a
computer. Finally, you will learn how to use a digital computer. When you
finish this section of The Man-Made World you will be able to make informed
judgements about computers, and you will be in a position to undertake the
further study necessary to use computers wisely and profitably in your future
work.
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Chapter A 2

LOGICAL THOUGHT AND LOGIC CIRCUITS

1. INTRODUCTION

Computers are able to carry out millions of simple operations each second.
The nature of each of these operations is determined by the way in which the smal-
lest physical elements of the computer are connected together. The rules for cor-
rectly interconnecting the elements contained in the various sections of the com-
puter are quite similar to the rules for expressing and solving problems in logic.
Because of this fact, the procedures for deciding how to interconnect the smallest
computer elements is called logical design. In this chapter we see that the logical
design of the circuits required in a simple computer is really quite easy. The basic
elements of computer circuits are switches, each of which can be either "off" or
"on" in the same sense as the switch used to turn a light bulb .off and on. For this
reason, basic computer circuits are often called switching circuits.

The ideas from logic needed for assembling computer circuitry are merely
those associated with the words "and", "or", and "not". in logic these words are
used almost in the same sense that we use them in everyday conversation.

2. HOW TO MAKE ELECTRIC CIRCUITS SAY "AND" AND "OR"

Sim le circuits with switches and li3hts.

Switching circuits enter constantly into our daily lives. We use them without
thinking about it flicking a light switch, dialing a telephone, controlling an auto-
matic elevator or a pedestrian-operated traffic light. The inner circuits of a com-
puter, though more complex, operate on exactly the same principles as do these
simple examples.

When jou walk into a dark room, you flick the light switch from "off" to "on".
You know that you have succeeded when the light appears. What you have done is to
establish a metallic connection from a source of electricity to the light bulb. The
actual source of this energy may be a generator owned by the electric company, to
which the wall outlet in your room is connected, or it might be a battery. In either
case, the source has two terminals, which we label "+" and "-" for identification
purposes, and the lamp must be connected between these [Fig. 1(a)] in order to be
lighted. The connection is usually a copper wire and it conducts electrical current
from one terminal of the battery or plug through the lamp and back to the other ter-
minal.

For our immediate purpose, the only fact of importance is that an unbroken
metallic connection from a source through a lamp and back to the source is necessary
to light the lamp. Thus, to turn the light on we complete the path, and to turn it off
we interrupt the path. These actions can be accomplished by inserting a switch, as
shown in Fig. 1(b). When the switch is operated ("on"), a pair of metal points (the
pair of points is called a contact) press against each other. This action completes
the path for the current. When the switch is released ("off"), the metal points no
longer press against each other and the path is interrupted. In this arrangement
the switch contact is said to be in series with the lamp.
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HANDLE

( a )

( b )

SWITCH CONTACT

Fig. 1 An electric light, controlled by a switch.
(a) A lamp, with connecting wires.
(b) A lamp in series with a switch contact.

It is possible to control a light with two switches in such a way that the
light is on only when both switches are operated. The circuit in Fig. 2(a) shows
how this is done using a series arrangement of the contacts from the two switches.
This arrangement is sometimes called an "and" circuit since the light is on only
when switch A and switch B are both operated.

It is easy to imagine an important application for our "and" circuit. It
could be used, for example, to activate the firing circuit for a rocket when both
of two operators in the blockhouse must agree that the firing should take place.
(How would you control the firing circuit when three, or more, operators in the
blockhouse must all concur that the rocket should be fired? )

The operation of the "and" circuit can be summarized in the table shown in
Fig. 2(b). Another way of describing this circuit is to concentrate on the condition
of the two contacts and the condition of the resulting path through both of them in
series. If we let "0" stand for an interru ted o en contact oz.path and "1" stand
for a completed closed contact or ath the table of com mations in Fig. 2(c) lists
all possible com mations o conditions controlled by t e two switches.

Another basic way of connecting contacts from two switches is to put them
in parallel with each other, so that the operation of either switch will complete a
pafh=ugh the circuit. In Fig. 3(a) you can see that there is a path for electric
current if either switch A or switch B is operated (or, of course, when both are
operated). This parallel connection of contacts is, therefore, commonly called an
"or" circuit.

Meanwhile, back at the launching site, imagine that each of two astronauts
lying in the capsule on the top of the rocket has a switch which he controls. The
first astronaut operates his switch (A) whenever he thinks there is a fuel leak. The
second astronaut, also on the lookout for fuel leaks, operates his switch (B) when
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he thinks he has found one. The light, controlled by the "or" circuit, will go on
whenever either astronaut senses trouble. (How would an astronaut feel if he knew
that the warning light was controlled by an "and" circuit? )

Switch A
Released
Released
Operated
Operated

Path through
contact on
Switch A

Switch B
Released
Operated
Released
Operated

Path through
contact on
Switch B

(b)

Li ,ght

Off
Off
Off
On

Path through
the contacts
in series

0 0 0
0 1 0
1 0 0
1 1 1(c)
Fig. 2 The series (or "and") configuration of two contacts.

(a) A lamp controlled by two contacts in series.
(b) A tabular description of the operation of the circuit.
(c) A table of combinations for the "and" circuit.

As in the case of the "and" circuit, the "or" circuit can be summarized by
a tabular description [see Fig. 3(b)]. Using 0's and l's as before, we can write a
table of combinations [see Fig. 3(c)] which shows how the condition of the parallel
configuration of contacts depends upon the condition of the individual contacts.

Imagine now that the pilot of a high-performance jet airplane has just lost a
large portion of his right wing. He must eject, but two distinct steps are necessary.
First, the cockpit canopy must be blown off; second, the seat (and he) must be
ejected by another explosive charge. A straightforward method would be to fire
the canopy charge with one switch and the seat ejection charge with another. But
then in the confusion of the emergency, he might fire the seat charge first, and it
and he would then be projected through the closed canopy an undesirable result.
How can the switches be arranged so that regardless of the order in which the
switches are operated, the first will fire the canopy charge and the second will fire
the seat charge? There is a way, perhaps already guessed, since it uses only a
combination of the "and" and "or" circuits. However, a slightly different type of
switch is required.

In the switches discussed so far, a single contact is controlled by a single
handle or lever. To solve the pilot's problem we need a switch in which two con-
tacts are controlled by a single lever. The two contacts are linked together by non-
metallic material that prevents the flow of electricity from one to the other, so that
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they can be use6 in two electrically separate circuits. When the switch is operated,
both contacts close simultaneously, and when the switch is released, both contacts
222nsimultaneouslz.

Switch A
Released
Released
Operated
Operated

Path through
contacts on
Switch A

Switch B
Released
Operated
Released
Operated

Path through
contact on
Switch B

(a)

(b)

Light
Off
On
On
On

Path through
the contacts
in parallel

0 0 0
0 1 1

1 0 1

1 1 1
(c)

Fig. 3 The parallel (or "on") configuration of two contacts.
(a) A lamp controlled by two contacts in parallel.
(b) A tabular description of the operation of the circuit.
(c) A table of combinations for the "or" circuit.

Now return to the pilot's problem. We can restate it in terms of "and" and
"or". The canopy blow-off charge should be fired when either switch A or switch B
is operated. The seat ejection charge should be fired when switch A and switch B are
operated. Consequently, the combinations of the two circuits in Fig. 4 will do the
required job. When only one switch is operated, no matter which one it is, the
canopy will blow off. Only when the other switch is operated will the seat be ejected.
(Note that the two contacts controlled by switch A have both been marked "a" and
the two contacts controlled by switch B have both been marked "b". The reason for
the distinction between a switch and its contacts will be apparent later. )

Let us close this section with a summary of terms we have used to refer to
switches. Switches maybe in one of two states: released or operated. A contact
controlled yt. a switch may also be in one of states: 222 or closed. It is also
true that a 2_211.-1 through a set of interconnected contacts is open or closed, whether
the path is through a single contact or through a complex configuration of contacts.
At a given time a path is either interrupted (in the open state) or it is completed (in
the closed state). In speaking of the condition of a contact or a more complex path,
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it is useful to use the pair of symbols, "0" and "1", to stand for "open" and "closed",
respectively. Any other pair of symbols, such as "$" and "4", could have been used.

IMP

CANOPY
BLOWOFF

SEAT
EJECTION

Fig. 4 A circuit with contacts both in series and in parallel.

However, it is conventional to use "0" and "1" and we do that here. A major source
of difficulty can develop from failure to remember that they are merely a pair of
arbitrary symbols and that the do not have numerical values. Switch contacts can
be connected in series or parallel. T e logical connective "and" corresponds to a
"series" connection and "or" corresponds to a "parallel" connection.

3. AN EXAMPLE: THE MAJORITY VOTE PROBLEM

Three legislators wish to vote on a number of issues and have their votes
anonymous. Each one is to control a switch which is labelled "No" in the released
position and "Yes" in the operated position. A lamp indicating that the majority
vote is favorable is to be lighted whenever two or three of the members vote "Yes".
One way of restating these requirements using "and" and "or" is:

"The control circuit is to be closed when, and only when,
1) switches A and B are operated or
2) switches A and C are operated or
3) switches B and C are operated.

(If switches A and B and C are all operated, then conditions 1), 2) and 3) are
all satisfied at once. r

To design the circuit, we remember that "and" calls for a series connection
and "or" calls for a parallel connection. Thus, statement 1) corresponds to a series
connection of contacts a and b on switches A and B. Similarly, statement 2) re-
quires contacts a and c to be placed in series, and 3) requires a series connection
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of contacts b and c. In addition, statements 1), 2), and 3) are connected by "or's";
thus, the above three series arrangements of contacts should themselves be con-
nected in parallel, as shown in Fig. 5(a). (Switch contacts have been represented
by the symbol in this figure. Representations of the switch handles have been
omitted. )

To check that the circuit really performs as advertised, we must trace
through the circuit with the switches in all their possible positions to find when the
overall circuit is closed and when it is open. First, construct a table as shown in
Fig. 6 listing the switches A, B, C across the top and their various possible con-
ditions; "1" for o Aerated and "0" for released. For example, the first row, 0, 0, 0,
means that all tnree switches are released; the record row, 0, 0, 1, means that A
and B are released while C is operated. Now make an additional column corres-
ponding to statements 1), 2), and 3) above. Put a "1" in that column wherever A
and B, or A and C, or B and C are "1" in the table, otherwise put "0". Next con-
struct a column corresponding to the state of the circuit just designed. Enter a
"0" whenever the circuit is open and a "1" whenever it is closed. Do this for each
of switches A, B, and C. For example, with A, B, and C all operated (1, 1, 1) the
circuit is closed, "1", since all three series branches are closed. When A and B
are operated and C released (1, 1, 0), the circuit is also closed, "1", since the upper-
most branch is closed (the lower two branches are open). This column will agree
with the previous one unless there has been an error in the circuit design.

a

(a)
a

b

19(11111110141(1111,

b c c1141(4(411114(1.

(c)

(b)

Fig. 5 Thee equivalent majority circuits.
The logical statement of circuit requirements at the beginning of this section

is only one of several ways to state those requirements. Another is:

"The control circuit is to be closed when, and only when,
1) A is operated and either B or C is operated, or
2) B and C are operated. "

This would lead to the circuit in Fig. 5(b). Another way is:

"The circuit is to be closed when
1) A is operated, or B and C are operated, and
2) B or C is opera,ted. "~

The resulting circuit is shown in Fig. 5(c). There are many other ways of con-
necting contacts controlled by switches A, B, and C to achieve the desired result;
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namely, to indicate a majority vote. All, however, will have the same tabular
description, called a truth table, indicated in Fig. 6, since they must all give the
same result when a particular set of switches is operated. It is always true that
two or more circuits with the same table of combinations are logically equivalent.

A B C
Logical

Statements
State of
Network

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1

1 0 0 0 0
1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Fig. 6 Table of Combinations for the Majority Vote Problem.

4. HOW TO MAKE AN ELECTRIC CIRCUIT SAY "NOT"

"Make" and "break" contacts.iipRgmeIm

We have seen that "and" and "or" can be represented by series and parallel
connections of switch contacts within a circuit. There is a third basic connective
of logic the word "not". How can we represent "not" in circuits having only
switches and their contacts? The answer is given by returning once again to see
how a handle or lever can control the opening and closing of contacts.

Fig. 7 (a) shows a single switch, A, controlling two different contacts.
Whenever the upper one is closed, the lower one is open, and vice versa. Thus
these contacts behave in the complementary way which we associate with "not".
When the upper contact is closed the lamp L

1
is lighted, and the lower contact is

open and the lamp L is not lighted. On the other hand, when the upper contact
is open and the lamp2L

1
is not lighted, the lower contact is closed and the lamp

L2 is lighted.

It has been seen that a single handle or lever can be used to control one or
more contacts in various places in the electric circuit. Now it is also seen that
a single switch handle or lever can oe made to close one group of switch contacts,
while simultaneously opening the contacts of a complementary group.

The entire circuit of Fig. 7(a) is sometimes used in photographic darkrooms
to warn people coming to the door that film is being dew 'oped inside and that the
door cannot be opened without ruining the film. Needed this situation is a red
warning lamp outside the door that goes on when the lamps in the darkroom go off.
In this instance, the red lamp would be L2 and the darkroom lamp, L1.

Logic circuits may involve a multiplicity of switch contacts, some of which
work in a fashion opposite to some of the others. In order to simplify their cir-
cuit diagrams we use the following conventions. We speak of a contact as being
of either the "make" or the "break" type. In Fig. 7(a) the upper contact is the
"make" contact and the lower contact is the "break" contact. The diagram shows
t=itch in the released state: in that state the make contact isopen and the
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break contact is closed. Depressing the lever in the diagram puts the switch into
its operated state; in that state the make contact is closed and the break contact is
open. If the switch is labelled with a capital letter ("A") the make contacts

O

IMO

A
"MAKE"

CONTACT, a

"BREAK"
CONTACT, 3

(a)

" MAKE" CONTACT
a

" BREAK" CONTACT

L2

1

( b )
Fig. 7. Two complimentary types of contacts, controlled

by the same switch.

associated with that switch are labelled with the corresponding lower case letter
("a") and the break contacts are labeled with that letter with a bar over it ("Z").
The make contact on circuit diagrams [see Fig.. 7(b)] is denoted by a cross; the
break contact is denoted by a bar. (It helps to remember that both "bar" and "break"
begin with the letter "b". )

In Fig. 8 there are several circuits, each containing several contacts of
both make and break varieties which are controlled by a single switch, S. With
the switch in its released state (and later with the switch in its operated state) in-
dicate which of the circuits have a completed path between their left and right
terminals and for which circuits this path is interrupted.

Useful circuits usin "break"contacts.
There is a common circuit which requires both make and break contacts.
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It is the circuit used to turn a light off and on by either of two switches. This
is exactly the arrangement needed to control a single light from either end

S S0 X X 0

0 1 X 0

0 1 1 o

S

$

X I I

S
0 X

X

T

Fig. 8 Circuits with contacts all controlled by the same switch.

of a hall or set of stairs. Changing the position of the switch where you are always
changes the condition of the light, regardless of the position of the other switch.

The circuit given in Fig. 9(a) shows how contacts on the switches A and B
can be used to control the hall light. The contact network consists of two circuits
in parallel and each of these consists of two contacts in series. There will be a
path through the contact network when either

(i) switch A is operated and switch B is not operated (released), or
(ii) switch A is not operated (released) and switch B is operated.

Because there is a pathwhen "A or B (but not Sot )" are operated, the circuit is
also referred to as the "exclusive-or" circuit.

IMINMP=111W
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The Circuit

Switch A Switch B Path (Light) a b path
released released open (off) 0 0 0
released operated closed (on) 0 1 1

operated released closed (on) 1 0 1

operated operated open (off) 1 1 0

(b) A table which shows how (c) Table of corn-
the hall light is controlled. binations,

Fig. 9 The two-variable odd-parity (or "exclusive-or") circuit.

The tables of Fig. 9 (b and c) list the properties of the circuit in terms of
the operation of the switches and, equivalently, in terms of the states of the make
contacts on the two switches. Note that if a person stands at switch A he can turn
the hall light off or on no matter whether switch B is operated or released. The
same thing can be done from the opposite end of the hall by using switch B.

The control circuit we have described is closed whenever just one of the
switches is operated, and is open whenever exactly none or two of the switches
is operated. It is possible to generalize this idea anc=-----.gn circuits, having
three or more switches, which are closed whenever any odd number of switches
are operated and open whenever any even number of switches are operated. A
circuit of this kind is called an "odd- parity" Two of them are shown in
Fig. 10.

The three variable odd-parity circuit will be particularly important when we
discuss the "adding" circuits necessary for the design of computers. The reader
should analyze its operation carefully by deriving the appiopriate table of com-
binations and by verifying each entry with the corresponding state of the circuit.
The table of combinations is given in Fig. 10(b).

Two additional exercises in analysis are given in Fig. 11. These circuits
are closed whenever a majority of their controlling switches are closed. The
first of these uses a break contact in a three variable majority circuit although
we already know that it is not necessary to use anything but make contacts (see
Fig. 5). Its table of combinations is also given in the figure.

5. A MODEL FOR A RIVER-CROSSING PUZZLE

A logic circuit using contacts is ultimately nothing more than a representa-
tion for the equivalent logical word statement. One type of application in which
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a c
x x

b
x 0

b

(a)
A three-variable odd-parity

circuit.

a b c ath
0 0 0 0
0 0 1 1

0 1 0 1

0 1 1 0
1 0 0 1

1 0 1 0
1 1 0 0
1 1 1 1

(b) Table of combi-
nations for three-vari-
able circuit.

(C) A six-variable odd-parity circuit.

Fig. 10 Three. and six- variable odd-parity circuits.

b

(a ) A three-variable majority
circuit.

a b c ath
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

1 0 0 0
1 0 1 1

1 1 0 1

1 1 1 1

(b) Table of combi-
nations for the three-
variable circuit.

(C) A five-variable majority
circuit.

Fig. 11 Two more majority circuits.
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this correspondence is quite direct is the representation of the rules for certain
kinds of logical puzzles. A traditional problem is the following:

A boatman must carry a wolf, a goat, and a cabbage across a river
in a boat which is so small that he can carry, at most, one of them
with him in it at a time. Moreover, whenever the wolf and goat are
together, he must also be present to keep the goat from being eaten.
Neither can he leave the goat with the cabbage. How can he carry
all of them from the south bank of the river to the north bank?

A key initial step for this sort of puzzle is to find a representation for the
situation at any given time. Here we let four switches, M (man), W (wolf),G (goat)
and C (cabbage) represent the four main characters in the cast. When one of them
is on the south shore, the associated switch will be released, and when on the north
shore the switch will be operated. The puzzle then becomes one of how, starting
with all of the switches released, to operate all of them without violating the rules
which have been set down.

The circuit designed later in this section does not itself solve the problem
but it will serve as a model of the situation so that various tentative approaches to
the problem can be tested without actually getting a wolf, goat, cabbage, boat and

a conveniently wide river. The circuit is used to turn on a warning light when
one of the conditions of the problem has been violated.

One condition. was that on either river bank the wolf should never be with the
goat without the man present. Thus, when M is operated (man is on the north shore)
and W and G are both released (wolf and goat are on the south shore) the warning
light should be on. It should also be on when M is released, and W and G both
operated. The other condition was that the goatand cabbage should never be to-
gether without the man present. Thus, when M is operated and G and C are both
released, or when M is released and G and C are both operated the warning light
should be on.

The two preceding pairs of conditions (four in all) lead to a contact network
with four corresponding sets of contacts in series, with all of these to be placed in
parallel with each other.

(1)
(1)
(2)
(2)

These sets
1: w,

w,
1: c,

c,

of contacts are
g,

g,
g,

The corresponding circuit is given in Fig. 12(a). A simplified circuit which
is equivalent to that one is given in Fig. 12(b). The reader should verify that these
are equivalent by examining each of the sixteen possible combinations in which the
four switches can be operated or released.

The rules of the puzzle tell us that the boatman can travel alone between the
banks of the river or can transport, at most, one of the others with him. If he goes
alone from the north shore to the south shore, this is represented on our model by
moving the switch M from the operated position to the released position. If he takes
the wolf to the north shore from the south shore, this is represented by operating
both of the switches M and W.

The puzzle now becomes one of starting with all switches released and of
operating or releasing the switch M (and at most one of the other switches) so
that eventually all of the switches are operated and so that in the process, the
warning light does not go on. Fig. 12(c) shows one possible sequence of switch
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(a) First form of
the circuit.

(b) Alternate form of
the circuit.

WC GM li ht solution
0 0 0 0 0-0
0 0 0 1 1

0 0 1 0 0--11
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1

(l\
0 1 1 0 1

0 1 1 1 0
1 0 0 0 0
1 0 0 1 1

1 0 1 0 1

1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1

1 1 '1 1

(c) Table of combi-
nations and a
solution of the
problem.

Fig. 12 Circuit models for the "river-crossing" problem.

states which solves the problem. That solution is:
(1) The man crosses to the north shore with the goat.
(2) He goes back to the south shore alone.
(3) The man crosses to the north shore with the cabbage.
(4) He goes back to the south shore with the goat.
(5) The man crosses to the north shore with the wolf.
(6) He goes back to the south shore alone.
(7) The man crosses to the north shore with the goat.

There is another slightly different solution with the same number of steps; can
you find it?

6. LOGICAL THOUGHT

What is logical thinking? There is no satisfying answer, for we don't know
exactly what mental processes e: person uses to draw conclusions from facts at
hand. However, we do know that some people, when confronted with problems
and puzzles, can obtain answers which seem consistent with conditions of the case.

Centuries ago, mathematicians founded a branch of mathematics which
they called logic, to aid thinking of this kind. Originally, these people hoped that
all real world problems could be settled by applying logic. Today we know that
this feat is impossible. Nevertheless, even today, the ability to draw conclusions
which are consistent with facts or theories (sometimes called postulates, as in
geometry) is considered a mark of intelligence. Often on intelligence tests, there

A-2.13



www.manaraa.com

are questions such as: "Decide if the conclusion 'All zryks sneeze continuously'
can be deduced from the postulates 'All three-headed zryks sneeze continuously'
and 'All zyyks have three heads'. " After the initial shock of such a question has
worn off, we recognize that whether or not the premises are reasonable, possible
or foolish is not at issue. The question seeks to determine if the person being
tested can decide what conclusions can legitimately be deduced from even the most
unlikely or mysterious premises. This type of "nonsense" question is purposely
designed so that experience with the subject of the question, or lack of it, will
neither hinder nor help in deducing a legitimate conclusion. Not everyone will
agree that questions of this sort really do test intelligence, but many people seem
to think so.

Regardless of this issue, however, there is a correct answer to such ques-
tions; an answer which can be derived by applying a 77717:ules. Furthermore,
these rules can be stated using the logical terms "and", "or", and "not" which
were incorporated into the switching circuits described earlier in this chapter.
It is thus possible to deduce logical conclusions from a complex series of facts
with the help of switching circuits, assuming that the facts can be represented as
circuit elements. This ability to deduce logical'conclusions rapidly and accurately
is vital in a variety of complex situations. Such situations exist in anti-missile
defense, in automatic observation of hospital patients, and in the operation of
petroleum refineries, for example.
And

Basically, logic concerns itself with the truth or falsity of compound state-
ments, such as, "The wind is from the northeast and it is raining." There are two
component statements in this composite statement, the two being joined by the con-
nective "and". The logical truth of this statement does not depend upon how accu-
rately we measure wind direction or whether we actually observe the rain. Logic
specifies only that if both statements are true the compound statement is logically
true; otherwise the compound statement is logically false. There is a correspond-
ence here between the "truth-value" (truth or falsity) of the compound statement
and the state of the series "and" circuit. The state of that circuit (open or closed)
corresponds to the truth value of the entire or compound statement, while the
states of the contacts correspond to the truth values of the individual parts or com-
ponents of the compound statements. Thus, only if both contacts are closed is the
circuit closed. The truth-table of Fig. 13 indicates how the logical truth of an "and"
statement depends upon the truth of the individual components of the statements.
These are labelled A and B for convenience. Note that if "1" were substituted for
true and "0" for false, this table would be identical to that for the "and" circuit
shown in Fig. 2(c). Note that the logical analysis of the "and" statement depends
upon the logical truth of its component statements and not upon the sense or meaning
of the compound statements. The truth table of Fig. 13 holds for the statement for
"A and B", where the components of the compound statements are represented
by letters, as well as for the earlier statement about wind and rain. In other

A

false false
false true
true false
true true

A and B

false
false
false
true

Fig. 13 A truth table for the and connective.
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words, logic deals with the logical truth of the relationship between statements
and not with the subject matter of the statements themselves, just as the "and"
circuit deals with the state of switch contacts and their series connection, not with
the size and shape of the contacts, or for that matter any other irrelevant fact
about the contacts. To emphasize this point, logicians often use "nonsense state-
ments, such as " gorgs can play the cello" and "zryk feathers make fine pillows".
We use this technique in the next few pages.
Or

Connecting statements to produce a compound statement often involves the
use of the word "or". Thus the statement, "Zryk feathers make fine pillows or
armidillos shun hyenas" consists of two simpler statements connected by "or".
To deduce the logical truth or falsity of the compound statement, we must be aware
of the truth or falsity of the individual parts. We must also be careful to interpret
properly the exact meaning of the connective "or". The "or" connective can be
used in two different senses, designated as the "inclusive or" and the "exclusive or".

In the statement "John will marry either Jane or Linda" we have an example
of the "exclusive or". "John will marry Linda" or "John will marry Jane", but
in the United States, John obviously will not be permitted to marry both Jane and
Linda (at the same time) even though the selection of either is permitted. In the
"exclusive or" the acceptance of one choice automatically eliminates the remain-
ing choice.

The word "or" sometimes reflects the possibility that while the selection of
one choice or the other may be acceptable, the selection of both choices remains
a possibility. This is the "inclusive or". Thus the statement "Payment for the
item in six installments can be made by check or money order" uses the or con-
nective as an "inclusive or". Here either checks or money orders or combina-
tions of both are acceptable choices.

Normally when a logician uses the connective "or" he uses it in an "inclusive
or" sense. If he wishes the "or" to be interpreted as an "exclusive or" he will
usually specify this in some fashion such as "A or B but not both". Otherwise his
use of the term would mean "A or B or both". In this text, "or" will be assumed
to be the "inclusive or", unless otherwise stated.

Returning once again to our statement (which we abbreviate "A or B") we
show the associated truth table in Fig. 14. This table should be compared with
the table of combinations of Fig. 3(c). Once again we see that a simple contact
network can represent a logical statement.

NOT

A B A or B
false false false
false true true
true false true
true true true

Fig. 14 A truth table for the or connective.

A fundamental rule in logic is that the only allowable truth-values for state-
ments are "true" or "false". (This corresponds to contacts and networks of con-
tacts having two possible states: "closed" or "open". ) Words like "maybe" and
"perhaps" are useful in everyday conversation but they are not useful in making
the definite statements necessary for logical thought.
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A system of logic based on statements that can be only true or false is not
complete without "complementary statements". A "complementary statement"
is one whose truth value is opposite to the original statement. For example,
the statement complementary to "Francis smokes cigars" is "Francis does not
smoke cigars". The statement complementary to "Gorgs cannot play the cello"
is "Gorgs can play the cello."

It is always possible to express the complementary statement by using
"not" but often we have other English words which we interpret the same way. "The
play was good"; "the play was bad" (not good). "The integer is odd"; "the integer
is even" (not odd). "That man is honest"; "that man is dishonest" (not honest).

A word of warning is appropriate, however. We may be used to thinking
that certain pairs of words have complementary meanings when they do not. (Con-
sider and criticize the following pairs of words as complementary pairs. Full;
empty. White; black. Blonde; brunette. Fast; slow. Positive; negative. Smooth;
rough. Heads; tails. Walk; run. Friend; enemy. )

The only safe way to express a complementary idea is to use the word "not".
Full; not-full. Empty; not-empty. Fast; not-fast. Walk; not-walk. And so forth.

7. AN EXAMPLE OF A PROBLEM IN LOGICAL THOUGHT

The logical connectives "and", "or", and "not" each have a corresponding
switching circuit. Let us now see how this fact may a,id logical thinking. Take the
following situation:

Agent 070 has been assigned to watch a house in which a suspected foreign
agent, known as Mr. Jones, lives._ Agent 070, however, has several other
assignments. He can drive by Jones' house only several times a day and
observe whether Jones' garage door is open or closed. The "file" on Jones
contains the following: Jones is a man of strong habits: whenever his car
is in his garage, the garage door is closed. Also, if Jones is at home,
then the car is in the garage.

Suppose Agent 070 drives by the house and observes the garage door closed. Can
he properly conclude from this observation that Jones is at home?

The knowledge of Jones' habits can be put into two critical logical statements.
They are joined by "and" into one compound statement which specifies Jones' be-
havior:

1. If the car is in the garage, then the garage door is closed, and
2. If Jones is at home, then the car is in the garage.

These statements are not phrased entirely in the logical terms, "and", "or", and
"not" which we have studied so far. However, they can be reduced to that form.

Note that these statements take the form "If then " These
have the appearance of logic statements, so let us analyze them as such. Remem-
ber that logic is concerned only with the truth or falsity of a statement in terms
of its component statements; that is, logic deals with the truth value of statement
(1) above in terms of the truth value of the component statements, "the car is in
the garage" and "the garage door is closed". In discussing the logic of "If
then ", it is useful to think of the entire statement as a promise; thus,

A-2.16



www.manaraa.com

you study regularly, the teacher will give you a passing grade" is promise of a
reward based on a condition. The logic of this re_ation is summarized in the
truth table of Fig. 15(a). In discussing this table, let us abbreviate the statement
to: "If A, then B". Now, clearly if A is true (the condition satisfied) and B is
true (the reward given), then the overall statement is also true (promise fulfilled);
if A is true (condition satisfied) and B is false, (the reward withheld), the state-
ment is contradicted (promise defaulted) and so is false.

Note that if the condition is not fulfilled, then the statement, "If
then promises nothing. Thus whether the reward is bestowed or not, the
promise can be taken as fulfilled. In line with this thinking, when A is false, (con-
dition not fulfilled), the composite statement is taken as true regardless of whether
B is true or false.

Now we consider a switching circuit to deal with these facts. This circuit
must have the same truth table as that of Fig. 15(a). Note that the "If
then " column shows all "trues" except when A is true and B is false.
Note, too, that the "or" truth table (Fig. 14) shows all "trues" except when A and
B are both false. A change of A to "not A" will make these two tables the same
as indicated in Fig. 15(b). Thus the statements, "If A, then B" and "not A or B"
are logically equivalent. The importance of this result is that a statement used in
logical arguments (If , then ) can be represented by "not" and "or" only.
So also a "not or " circuit represents "If , then " Thus, the
contact circuit for "if A, then B" is a simple parallel connection of an ""i" contact
and a "b" contact as shown in Fig. 15(c).

A B If A then B A B Not-A Not-A or B

false false true false false true true
false true true false true true true
true false false true false false false
true true true true true false true

(a) The truth table (b) Showing the equivalence of "not-A
or B" and "If A, then B".

(c) The contact circuit.

Fig. 15 The, if then connective.
Let us now return to 070 and Jones, and rephrase the logical statements

using the equivalences above. First, let us set up the following abbreviations:
A - The car is in the garage
B - The garage door is closed
C - Jones, is at home

The logic statements are then
1. If A, then B and 2. If C, then A

Using the logical equivalent for "if then "; the statements become
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1. Not-A or B
and

2. Not-C or A
The contact network for this compound statement is shown in Fig. 16 (a).

This circuit is a model of the logical situation at Jones' house just as the
"river-crossing" circuit of Fig. 12(a) and (b) is a model of the situation there.
Neither of these circuits gives the answer to its problem directly, but each cir-
cuit can be manipulated by a person to find the answer. The circuit of Fig. 16(a)
can, therefore, help in decidingwhether or not Jones is at home when 070 ob-
serves that the garage door is closed. Note that the problem as posed says that
the statement about Jones' habits is true. In the network model of this problem,
then, we are interested only in those switch states for which the network is
clo sed.

Recall that the original problem was to decide if Jones is necessarily at home
when 070 observes that the garage door is closed. In the network this is equiva-
lent to asking: "If switch B is operated, must switch C be operated in order to
close the network? "

Consulting the network again, we see in Fig. 16(b)(where switch B is
operated) that the network is closed if either A is operated or C is released or
both. Thus, there is a way to close the circuit without operating C (A operated,

111=MP

b

a

(a )

(b)

a

a

(c)

Fig. 16 A Logic Circuit for Agent 070.
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C released). Also, the circuit can be closed when C is operated (by operating A).
In other words, the conclusion is that if the car is in the garage, 070 does not
have enough information to decide whether Jones is at home or not.

This indeterminate situation arises because the condition of the A switch is
not determined by the conditions of the problem. That is, 070 does not know
whether the car is in the garage or not (he only knows that the garage door is down,
not whether the car is or is not in the garage.)

If 070 observes the garage door is open, can he conclude that Jones is at
home? In the network model, B is released and the circuit of Fig. 16(c) is appli-
cable. As can be seen there, this circuit is closed 22.1i when c is closed (C is re-
leased), and a is closed (A is released). For c open (C operated) there is no
setting of tie A switch which gives a closed path). This situation allows us to con-
clude that "statement C is false" is the logical answer. Thus Jones is not at home.

This same method can be used to solve much more complex problems in
logic. Sometimes in such problems, another logical connective is used. It takes
the form "A if and only if B". This statement, too, can be reduced to a form con-
taining only "not" and "or". Let us take an example. Consider this statement:

"Jones is at home if and only if the car is in the garage." This statement says
that Jones and the car are always at home or always away at the same time. So the
compound statement is true only if both component statements are true or if both
are false. That is, the statement is false if the car is at home andJones is away
or vice versa. This situation is summarized in the truth table of Fig. 17(a).

P if and only if Q

false false
false true
true false
true true

true
false
false
true

(a) The truth table (b) The contact network

Fig. 17 Truth table and corresponding contact network
for the if and only if connective.

A slightly different form of the compound statement will aid in finding the
contact network for "A if and only if B". The logically equivalent statement is
"(A and B) or (not-A and not-B)": (Jones is at home and the car is in the garage)
or (Jones isnot at home and the car is not in the garage). The corresponding
contact circuit is therefore the one shown in Fig. 17(b).

8. CONCLUSION

This chapter shows how electric circuits made up of on-off elements (con-
tacts controlled by switches) are put together to represent the basic connectives
of logic: "and", "or", and "not". Furthermore, these basic contact circuits
can be combined to represent, or model, logical situations such as the river
crossing problem, or to perform logical operations, such as in the majority
circuit. Logic circuits are at the root of automatic aids to human thought
and action. Thus, any problem or operational requirement (as in the hall light
problem) which can be stated in logical form can be met by a logic circuit.
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So in this sense, logic circuits can be an aid to thought. There are many other
aids to human thought, but none relieve us of the obligation to think. For exam-

. pie, reducing a real problem to logical terms may be a mental challenge as great
as or greater than the logical manipulations themselves. Furthermore a mis-
take in this reduction can easily result in an inappropriate answer. Neverthe-
less, aids to thought put us a step ahead. We return to these ideas later in this
course as we talk about computer problem-solving and the use of models.

Meanwhile, we have progressed a significant step toward understanding di-
gital computers. We have seen that switch-controlled contacts properly organ-
ized into circuits can perform useful tasks. We see in the next chapter how these
circuits can in turn be assembled into larger units to form the basic sub-units of
a computer .

PROBLEMS

2-1 A door lock is to be operable only when time switch T and manual
switch M are both activated. Draw the circuit from the components
shown below

X o H LOCK H

;
2-2 A single house electric bell is to be operated when either the front or

rear door push buttons are operated. Draw the wiring diagram.

2-3 Review the seat ejection problem in Section 2. Complete the
truth table for the circuit in Fig. 4.

A B CANOPY
CHARGE

SEAT
EJECTION

0 0

0 1

1 0

1 1

2-4 The figure below shows a circuit which is to be analyzed.
(a) Construct and complete a truth table for the network.
(b) Compare the truth table with that of Problem 3.
(c) Which of the following is a correct description of the circuit?

and; or; odd-parity; even-parity.
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2-5

2-6

2-7

Describe one or more situations which might require the
of three contacts in series.

Describe one or more situations which might require the
of three contacts in parallel.

Construct and complete a truth table for
(a) Fig. 9(a)
(b) Fig. 10(a)
(c) Fig. 10(c) (optional)

2-8 Define odd-parity as used in contact network analysis. Define
even-parity as used in contact network analysis.

operation

operation

2-9 Construct and complete a truth table for the network shown below.

2-10 A board of trustees for the Last National Bank consists of four
voting members. All loans must be approved by at least three
of the board members before it is accepted. The members wish
to vote in secret but wish to know if any three or more members
voted yes. Below you will find a contact network for this "at
least 3 out of 4" vote problem.
(a) What three contacts should be placed in the bottom branch of

this network so that the network is completely specified?
(b) Are any other branches in parallel necessary? If so, why?
(c) Draw two other networks that have fewer contacts ana which

will do the same job.
a

2-11 Describe one or more situations where a majority circuit would be
appropriate.
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2-12 (a) Complete the truth table for the contact networkphowp below.
(b) How many switches must be operated in order to light only L1?
(c) How many switches must be operated in order to light only L1

and L2?
(d) How many switches must be operated in order to light all three

lamps?
(e) Does the order in which the switches are operated determine

which lamps will be lighted?
(f) Can you think of a real-life situation in which this circuit might

be used?
TRUTH TABLE

L L L3

2-13 Districts I, II and III combined to form a regional school with each
district having two members on the Board of Education. Action by
the board requires a majority vote by district. A negative vote by
one representative of a district acts as a veto on a positive vote by
the other representative, Design a circuit which will permit
secret voting by individuals. Use a lighted lamp to indicate affirma-
tive action by the board.
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Chapter A 3
BINARY NUMBERS AND LOGIC CIRCUITS

1. INTRODUCTION
In Chapter A-2, binary variables (l's and 0' s) were used to represent the

truth or falsity of logical statements. Furthermore, we found that contact net-
works can be used to represent such statements. Two such networks, developed
in Chapter A-2, were the majority circuit and the odd-parity circuit. In this
chapter we see how these can be used to construct a larger circuit which adds
numbers. Our adder, however, will work for numbers only if they are expressed
as a string of "0's" and "l's", for in this form there can be a direct relation be-
tween the individual digits of the numbers and the switch contacts. Thus, even
though decimal numbers may be more familiar, binary numbers are more con-
venient for logic circuits and for computers.

2. THE DECIMAL AND THE BINARY NUMBER SYSTEMS

In the decimal system, a number is expressed as an ordered sequence of
digits, such as 85283. Each digit can have one of ten values, 0 through 9. The
position of each digit in the sequence determines its value in units, tens, hun-
dreds, etc. The rightmost number gives the units and is called the least signi-
ficant digit*, while the leftmost number is the most significant digit and in our
example represents the number of ten thousands. The values of the digits in a
decimal number are all powers of ten. For instance, the value of the leftmost

8 in the number 85283 is 10 = 10 10 10.10 = 10, 000. Remembering that

103 = 1, 000, 102 = 100, 101 = 10, and 100 = 1, the number 85283 represents

86104 + 5.103 + 2.102 + 8.101 + 3'100 = 8.10000 + 5.1000 + 2.100 + 810 + 3.1

A similar system is used for binary numbers. A binary number is expressed as
an ordered sequence of binary (two-valued) digits, such as 10111. The value of
each of these digits is avower of two, and the digits are ordered so that the least
significant digit is at the right and the most significant at the left, as before.
Therefore, the binary number 10111 has the decimal value

1. 24 + 0. 23 + 1. 22 + 1.21 + 1.20

*This positional notation, which we now take for granted, did not always exist.
In more ancient systems, such as the Roman (in which the number 1984 would
be written MCMLXXXIV), computation with numbers was so difficult that only
a learned scholar could handle even the simplest problems in arithmetic. We
use the Hindu system, which was developed from the earliest positional nota-
tion we know of -- that of the Babylonians and Sumerians.
A significant advantage of a positional notation is that after learning only a few
rules which apply to the numbers represented by single digits, one can use these
same rules to add, subtract, multiply and do other computations on numbers of
any size whatsoever.
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= 1.16 + 0.8 + 1.4 + 1.2 + 1.1
= 23*

Any number in the binary system can be converted to a decimal number by this
technique. The list of numbers below, written in both the binary and decimal
systems, are examples for practice.

Binary representation Decimal representation
1 2 +1. 22 + 1 20 = 10101 2 1 0

1 + 1 1 00 = 21
111001 57

1001101 77
1110111 119
1111111 127

11111000000 1984
1010 10

1100100 100
1111101000 1000

11110100001001000000 1000000

Some preliminary comments must be made before we can determine how
to convert a number from the decimal notation to the binary notation. First, re-
call that to multiply a decimal number by ten, you must shift the number one
place to the left and add a zero. (Note that 852830 is ten times 85283.) Similar-
ly, a number in the binary system is multiplied, by two by shifting it one position
to the left and uttipp ag11)flle right of the shifted number. Thus, 101110 is
twice 10111.

If a number is written in the binary system, it is easy to determine whether
it is even or odd by looking at the rightmost digit. If that digit is "0", the number
is exactly twice the value of some other integer, and consequently the number is
even. If the rightmost digit is "1", the number is not twice another integer and
1=efore the number must be odd. In that case, the number can be made even
(and therefore divisible by two) by subtracting 1 from it.

These facts can be exploited for converting decimal numbers to the equiva-
lent binary numbers. The procedure determines the digits in the binary number,
one at a time, starting with the rightmost, or least significant,digit and working
to the left. For example, conversion of the decimal number 117 is illustrated
below:

117 is odd. Thus the rightmost or least significant digit is 1.
(117-1)/2 = 58 is even. Thus the next digit is 0.
5812 = 29 is odd. Thus the next digit is 1.
(29-1)12 = 14 is even. Thus the next digit is 0.
14/2 = 7 is odd. Thus the next digit is 1.
(7-1)/2 = 3 is odd. Thus the next digit is 1.
(3 -1)/2 = 1 is odd. Thus the next digit is 1.
(1-1) j 2 = 0. Finish.

*The smallest ,ossible integer base for a positional notation is "2". Any integer
'could be used as a number base. From time to time advocates of a base-12 or

duodecimal" system appear. They claim that this base would have many ad-
vantages over the decimal system because 12 is divisible exactly by four smaller
integers -- 2, 3, 4 and 6 -- rather than only by the two -- 2 and 5 -- which are
possible in the decimal system. The duodecimal system would require twelve
different symbols; for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, and 3.

A-3.2
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Thus, Decimal 117 = Binary 1110101. Note that the basic procedure consists of
successive divisions by 2, except that the number is always made even (by sub-
traction of 1, if necessary) before the next division.

We.

BASE OF
TREE

a
X

b

L

L2

X
L3

d L4

L5

L6

X d L7

L8

X
L9

L10

X d L11

L12

L1

a L 1 4 41)

d L 15 ch

0 I

Fig. 1 A selection "tree" circuit set to 1101.

LAMP
LIGHTED
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3. A "TREE" CIRCUIT
A circuit which converts binary to decimal numbers is shown in Fig. 1.

Known as a selection tree circuit, it will play an important role in our computer
later. Imagine that we wish to turn on one of sixteen different lights (numbered
L0.through L15) by operating four switches (A, B, C, and D). The state of the
switches represents the binary number and the lighted lamp the corresponding
decimal number. For instance, if switches A, B, C and D are set to 1, 1, 0,
and 1, respectively, lamp #13 is turned on since the contacts "a", "b", "c"
and "d" are closed. When these contacts are closed, the one path completed
from the "base" of the tree to a lamp is the one which goes to lamp #13.

Tree circuits are commonly used in computers to connect any one part to
another selected part so that information in the form of binary digits may be
transferred between them. In Chapters A-4 and A-5 we investigate in more de-
tail how this is done.

4. THE "SIGN-MAGNITUDE" NUMBER REPRESENTATION
Very often negative numbers must be represented in a computer. We have

chosen the "sign-magnitude" method, which is a common one. Here the leftmost
digit of a binary number is used to specify the sign of the number. This digit is
called the sign-bit. If the si-n bit is "0" the number is ositive and if the si n
bit is "1" the number is negative. (The magnitude, or "size", of a number is
always positive.) Therefore, for example,

0000000000101 represents +5, and
1000000000101 represents -5.

In this example, there are 13 bits in each number. Since the sign occupies the
first bit, there are only twelve bits available to represent the magnitude. Thus,

numbers as large as 212-1 = 4095 can be represented. The representation for
+4095 is 0111111111111 and that for -4095 is 1111111111111.

A -3.4
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S = Sum
X= First number to be added
Y = Second number to be added

START

11,

Compare the signs
of X and Y.

If sgn X = sgn Y

set ISI = + I I

and sgn S = sgn X.

Y

Set S =

(Signs indicated by 0
or 1 in most significant
place)

If sgn X sgn Y

< -,,
Compare the magnitudes '

of X and Y.

If IXI>ly1

set ISI = IXI-IYI

and sgn S = sgn X

If IX I< Y

set ISI = IYI-IX)

and sgn S = sgn Y

Fig. 2 A flow chart showing how to compute S = X + Y
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If sgn X

set

D = Difference
X = First number
Y = Second number
(i. e. , D = X - Y)

sgn

IDI = IXI IYIl

START

Compare the signs
of X and Y.

(signs indicated by 0
or 1 in most significant
place)

\If sgn X = sgn Y

Compare the magnitudes

of X and Y.and sgn D = sgn X

If IXI = IYI If IX I>

set D =

YID If IXI<IYj

set I DI =

and sgn D = sgn X

set

and sgn D = sgn Y

Fig. 3 A flow chart showing how to compute D = X - Y
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It is simpler to design adding circuits if they only need to add positive
numbers. It is simpler, also, to design subtracting circuits for subtracting
a smaller positive number from a larger positive number. Thus the add and
subtract circuits of our computer operate only on the magnitudes of the pairs
of numbers, X and Y. This requires that to compute the sum, S, or difference,
D, of numbers which can be either positive or negative, the signs and magnitudes
of these numbers must be treated separately. For example, in subtracting"-5"
from "+3" (3-(-5) = 8), there are two parts to be determined: namely, the mag-
nitude of the difference which is "3 plus 5"; and the sign of the difference which
is positive. In general, the details of the decisions which must be made are
shown in Fig. ;and 3 as flow charts. In these "flow charts" we have represented
the magnitude of a number N by " IN I" and the sign of N by "sgn N".

The decision procedures shown in the flow charts are based upon compari-
sons of the signs and of the magnitudes of the numbers X and Y. In these charts
MTresult of a comparison determines which of several things should be done
next; the arrows show the choices which are available. The two-variable "odd-
parity" circuit (Fig. 9(a), Ch. A-2) may be used to compare the sign bits of the
two numbers. We have, as yet, no specific procedures or circuits for comparing
the magnitudes of two binary numbers. Such a circuit is discussed in the next
section.

5. A CIRCUIT WHICH COMPARES TWO POSITIVE INTEGERS

If two positive numbers are expressed in the binary system, they may be
compared to determine which is the larger by the rules shown in the flow chart
in Fig 4(a). For this scheme to produce correct results, each number should
contain the s%- me number of digits. Any difference in length can be eliminated
by placing one or more "0's" to the left of the shorter number. In a computer,
the magnitudes of numbers are ordinarily represented this way. Now, the flow
chart says: Starting with the leftmost position, compare the digits in the corres-
ponding positions of the two numbers. If these digits have the same value, com-
pare the next pair of digits to the right. Continue to do this until an unequal pair
is found or until there are no more digits. If an unequal pair .s found, the num-
ber which contains a "1" at this position is larger than the number which has the
"0". If the values of the digits are the same in each position, the numbers are
equal. This procedure is illustrated in Fig. 5.

Problem: Which is the larger number?

I x I = 0 0 1 1 0

IY1= 0 1011
Steps according to Fig.46.

Step I. Compare the leftmost pair of digits
Result: Equal
Step 2. Compare the next pair of digits
Result: digit of (Y j> digit of IX I
Conclusion: The magnitude of Y is greater than the magnitude of X.

Fig. 5

A-3. 7
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START
Begin with
the left-
most digit.

If the
digit of X

>digit of Y

Compare the corresponding

pair of digits of X and Y.

if the digit
of X = digit
of Y

If the digit
of X < digit
of Y

Conclude
that X>Y.

0

Is there another pair of
Conclude
that X<Y.

digits to the right in X and Y?

Yes

Loop
Conclude
that X = Y

Fig. 4(a) Comparing two positive binary numbers

Fig. 4 (b) The comparison circuit
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The flow chart procedure applies equally well to numbers expressed in any
base. Some procedure of this kind is followed in comparing two decimal num-
bers. The comparison always proceeds from left to right. The "loop" in the
flow chart dramatizes the fact that there is a simple basic step which may be re-
peated over and over again. This step is merely the comparison of the corres-
ponding digits. It may be expected, therefore, that the comparison circuit will
have one basic contact network repeated many times. The circuit in Fig. 4(b)
has this property. It has four repeated "stages" but it could be extended to as
many stages as there are positions in the numbers to be compared.

In the figure we have assigned the contacts on a set of four switches X8,

X4, X2, and X1 to represent the digits of the number X and those on switches

Y8' Y4' Y2, and Y1 to represent the digits of Y. (The subscripts indicate the

values of the digits.) For example, take specific values of X and Y:
X = 1001 (nine) is represented by X8 = 1, X4 = 0, X2 = 0, X1 = 1 and

Y = 1010 (ten) is represented by Y8 = 1, Y4 = 0, Y2 = 1, Y1 = 0.

The operated switches are X8, X1, Y8, and Y2. The others are released. Under
these conditions the heavily lined path is completed to lamp L3, thereby indicating

that X <Y. In general, a path will be completed to L1 if X is greater than Y, to

L2 if X is equal to Y, and to L3 if X is less than Y.

6. ADDING OF TWO BINARY NUMBERS
Every general purpose digital computer has an arithmetic unit, the heart

of which is an adder capable of adding two binary numbers. The logic circuit
for doing this is so fundamental that it is considered as a basic building block of
large computers.

We add two numbers in the binary system in much the same way that we
add numbers in the decimal system. One number, X, is placed above the other,
Y, so that digits of the same value, or weight, are in the same column. We work
progressively from the rightmost column towards the left. At each step the pair
of corresponding digits of X and Y (the digits in a given column) are added to-
gether, along with any "carry" digit from the previous column. The sum of these
three digits is computed. In general, this sum may require two digits in its
representation: the carry digit and the sum digit. The sum digit is written at
the foot of the column in the required sum. The carry digit is placed in the next
column to the left, and the procedure is repeated until the sum is complete.

Weights: 64 32 16 8 4 2 1

Carry digits, C: 1 1 0 1 1 1 (0)

First number, X: 0 0 1 0 1 1 1 (=23)

Second number, Y: 0 1 1 0 0 1 1 1:-.51l

Sum, S: 1 0 0 1 0 1 0(=74)

Fig. 6 (a) An example of binary addition which illustrates the rules.

A-3.9
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Arithmetic sum
of the digits Carry Sum
of C X and Y Di it Dis it

zero
one 0 1

two 1 0

three 1 1

0 0

(b) Rules for determining
the carry and sum digits
for binary addition.

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1- 1

(c)

Carry Sum
Di. it Di. it

0 0

1 0 1

0 0 1

1 1

0 0 1

1

0

1

Table of combinations for the carry
and sum digits for binary addition.

Fig. 6 Addition of two binary numbers
As an example of this procedure we have, in Fig. 6 (a), shown how to add

the numbers 10111 and 110011, which are equivalent to the decimal numbers 23
and 51. The reader should reconstruct the individual steps required by following
the rules given in the above paragraph.

Note that in any column the sum of the carry digit and the digits from the
numbers X and Y may have any value between zero and three. The binary rep-
resentations of these sums are 00, 01, 10, and 11, respectively. In the first
two of these sums, the carry digit is 0. In the remaining two the carry digit is
"1" which must be transferred to the next column to the left. These facts are
summarized in Fig. 6 (b).

The table of combinations given in Fig. 6(c) shows in greater detail all
possible combinations of the values for C (carry), X and Y digits, and the re-
sulting value.s for their sum and their carry digits. From our viewpoint, the
most important thing about this table is that we have seen its right-hand two
columns before. The carry digit column is the same as that in Fig. 11(b) and
the sum column is the same as that in Fig. 10(b), both of Chapter 2. These
described the behavior of the three variable majority and odd-parity circuits,
respectively.

This indicates that the carry digit in our adder circuit can be generated
by the same circuit which the three legislators used to decide if a majority of them
had voted "Yes", and that the sum digit can be generated by the same odd-parity
circuit needed to control a hall light from each of three positions. The simple
rule for determining the sum digit in any column is: If the column contains an odd
number of "l's" (odd parity), the sum digit is 1; otherwise the sum digit is 0.
For the carry digits: If the column contains two or more "1' s" (majority), the
carry digit is 1; otherwise it is zero. It is apparent that these two basic rules
can be used for columns of indefinitely long binary numbers. Note that there is
no carry digit in the rightmost column (that is, C1 always has the value7.M7us
C2 is "1" only when both X and Y are 1, and S1 is 1 when either X or Y (but not
both) is 1.

When two sufficiently large binary numbers are added the number of digits
in the sum may be one more than the number of digits in either number. This
fact will require special steps when an adder circuit is used.

A -3. 10
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Core of the
electromagnet

Winding

+0
resistor

Pivot

Armature

the relay R

Fig. 7 Schematic diagram of a relay.
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7. HOW TO CONSTRUCT A CIRCUIT WHICH ADDS TWO NUMBERS

A new element, the relay, will be needed for the adder circuit. A relay
(see Fig. 7) is a device which controls make and break contacts through a lever
operated and released by an electromagnet, rather than by hand. An electro-
magnet consists of a coil of wire called the winding wound around a piece of iron
or other easily magnetized substance called the core. When a sufficiently large
electric current exists in the winding, the electromagnet attracts the armature
which is made of magnetic material and is free to move about a Eizot. When the
armature has been pulled toward the core the relay is said to be operated, and
its make contacts are closed, its break contacts are open. When there is no
current in the winding a spring pulls the armature away from the core, the relay
is then said to be released. In that state the make contacts are open, and break
contacts are closed. The physical appearances of these various parts on actual
relays may differ in detail from the diagram. Though Fig. 7 shows one make
and one break contact, most relays are constructed to control many contacts.
The diagram shows how a relay "R" could be used to allow a hand operated switch,
A, to control the make and break contacts, r and r, on th relay. When the "a"
contact is closed the relay will operate. (The resistor shown in the winding cir-
cuit simply limits the amount of current in the relay winding. If the resistance
is too large, there will not be enough current to operate the relay. If the resis-
tance is too small there will be an excess of current and the winding may overheat).
Operation of the relay closes the make contacts and opens the break contacts.
When the switch A is released, the current in the winding ceases, the pull of the
electromagnet on the armature disappears, the spring returns the armature to
the original released position, the make contacts open and the break contacts close.

The action of any make contacts ("r") cn the relay is the same as the action
of the make contact ("a") in series with the relay winding. Howeve:, the contact
"a" is sometimes replaced by a complex network of contacts. In these cases,
the single contact "r" reflects the action of the entire network: when the network
is open, "r" is open, and when the network is closec17171iThosed. Note that
the break contact, "r ", behaves oppositely. Thus the relay permits a single net-
work to control many make or break contacts on a single relay. Thus in applica-
tions where many copies of a complex contact network would be required, one
copy of the entire network suffices. Its action is duplicated by using relay con-
trolled contacts.

When a relay is shown in a circuit diagram most of the working parts are
not included. It is only necessary to indicate how the current through its winding
is controlled and how its contacts are used. In Fig. 8 (a) a typical circuit dia-
gram is shown. The contact "a" in series with the relay winding controls the
operation of the relay. The relay contacts, r and r, operated by the relay R, con-
trol the lamps, L

1
ana L2. (Compare the circuit with that of Fig. 7 in Chapter 2).

Because the "a" contact is in series with the relay winding this arrangement is
called series control. Series control is used in the design of the adder in the next
section.

Another way of controlling a relay is shown in Fig. 8 (b). Here a break con-
tact, "e, has been placed in parallel with the relay winding. When this contact
is open (that is, when the switch .L2222a_ated) current will exist in the winding

become operated. When the contact "a" is closed, however,
the current from the electrical source through the resistor is diverted, or shunted,
around the relay winding. This type of control of a relay is called shunt control.

A -3. 12
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0 o+

0

r

(a) Series control

R

Ti

L2
0 +

0+

L I
r

ccrilb_

0 X ---L_______0 +

L2
T

c+0

(b) Shunt control

Fig. 8 Series and shunt control of a relay.
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Almost all of the current follows the path through the shunting contact rather
than through the winding because the resistance of the contact is so much less
than the resistance of the winding. With the current shunted around the winding
(that is, with the switch A released) the relay will become released.

The same relay action can be obtained with either series or shunt control.
However, as indicated in Fig. 8(a) and 8(b) complementary contacts (make in one
case, break in the other) are necessary on the relay winding. Note in the figure
the lamp response to the action of switch A is identical in both circuits. Com-
binations of these two basic types of control are also possible. We examine some
examples in the following chapter.

8. THE ADDER AND ITS RELAYS

The logical rules for generating the sum and carry digits in a binary adder
have already been presented. Now they must be incorporated into contact net-
works. The adder diagramed in Fig. 9 adds numbers having three binary digits,
but the circuit could be extended to any number of digits. The number X will be
entered into the circuit by three switches which we call X4, X2, and X1; switches

Y4, Y2 and Y1 provide the second number, Y.. (For example to add X = 6 (bi-

nary 110) and Y = (binary 111), set X4, X2 and Xi to 1, 1 and 0, and set Y4,

Y2 and Y1 to l' land!).

Remember that the sum and carry digits in each column of an addition in-
volves the carry digit from the previous column. In the adder, the carry digits
are represented by the states of three relays, called C8, C4 and C2. The digits

of the sum, S, are to be displayed by the lamps S8, .S4, S2 and Si -- "0" by an

unlighted lamp and "1" by a lighted lamp. (The lamp S8 Ls controlled by the left-

most carry, C8. If the sum of the added numbers could always be represented by

three digits that lamp would not be necessary).
Returning to the example, the six switches, X4, X2, X1, Y4, Y2, and Yi,

are set as noted above. The actions of the contact networks which control the re-
lays and lamps are as follows:

1:X
1

= 0 and Y
1

=

C2 = 0, X2=1 and Y2= 1:

C4 = 1, X4=1 and Y4= 1:

C8 = 1

Thus,
also,
Thus,
also,
Thus,
also,
Thus,

S1

C2

S2

C4

S4

C8

S8

= 1 ("odd-parity" of x1 and y1);

= 0 ("and" of xi and y1).
= 0 ("odd-parity" of c2, x2 and y2);

= 1 ("majority" of c2, x2 and y2).
= 1 ("odd-parity" of c4, x4 and.y4);

= 1 ("majority" of c4, x4 and y4).
= 1.

The lamps S8, S4, S2,
110) and 7 (binary 111)

and S1 indicate, by their states, that the sum of 6

is 13 (binary 1101).

A-3. 14
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C2

x
I

0 1

0 x) X rj 1/\AA,01-1

X

1 X
yi

Majority Circuits

Odd Parity Circuits

Fig. 9 A three-digit binary adder.
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PROBLEMS

3-1 Convert the following binary numbers to decimal form.

11
101
110

1011
1010

10000
110010
11010
1100100
1111101000

3-2 Convert the following decimal numbers to binary form.

1

8
4
2
9

15
16
31
32
27

Convert the following decimal numbers to binary form.
technique illustrated in Section 2.

73
119
237

527
512
256

Use the

3.4 Add the following pairs of numbers. Perform the addition in binary
arithmetic, and express the answer in binary form.

100+ 11 =
101 + 11 =

1000 + 1000 =

3-5 Perform the following binary addition.
verting the numbers to decimal form.

1010 + 110010 =
1011 + 11010 =

3-6 Perform the following binary
Problem 3-5 above.

100 - 11 =
1010 - 101 =

110011 - 11010 =

Check your work by con-

subtractions. Check your work as in

3-7 Perform the following subtractions,

1100100 - 11010 =
11010 - 110100 =

3.8 Refer to Section 5 and Fig.
(a) What is the meaning of

Fig. 4?
(b) For the following pairs

Why?

and check your work.

4
the subscripts on the switch letters in

of numbers, which lamp will light?

A-3. 16
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(1) A = 1010
B = 111

(2) A = 1010
B = 1100

(3) A = 1010
B = 1010

3-9 Explain the function of
(a) the first left -hand section of the binary adder in Fig. 9..
(b) the first right-hand section of Fig. 9.

3-10 Construct and complete [for Fig. 9 j a truth table for
(a) the left-hand section of the first stage;
(b) the right-hand section of the first stage.

3-11 Name one application of a tree circuit.

3-12 Study Fig. 1. Can you find a closed path between lamps 6 and
8 for any state of the switches? Between any other pair of lamps?

3-13 Complete the truth table for the two networks shown below. For
each determine a simplified network which has the same truth table.

b

NETWORK SC

A B C SC OC

0 0 0

0 0 I

o 1 o

o 1

1 0 0

1 0 1

1 1 0

1 1 1

NETWORK OC

3-14 A general rule is illustrated in the six networks shown below. Find
the rule by completing the truth tables and use it to get a network for
column Z. (Hint: Your rule will need the words " series", "parallel"
and "not".)
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a

X I

NETWORK S

O

a

X I

NETWORK T

NETWORK Y

NETWORK Z
(DRAW THIS NETWORK)

a
o X

NETWORK W

b

C

b c

NETWORK X

a 6
0 I I X

NETWORK 1.1

NETWORK V
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A B S T

o 0

0 1

1 0

1 1

A B C Y Z

0. o 0 1

o 0 1 0

0 1 0. 1

0 1 1 0

1 0 0 0

0 1 0

1 1 0 1

1 1 1 0

A B C W X

o 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

I 1 I

ABC UV
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

I I I
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3-.15 Derive a truth table for each of the two networks shown below. For
each determine a less complicated network which has the same
truth table.

NETWORK NO.1 NETWORK NO. 2
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Chapter A 4

LOGIC CIRCUITS WITH MEMORY

1. INTRODUCTION

One of the most fascinating facts about circuits containing logic elements
such as contacts controlled by relays is that they can "remember" something
about what has happened to them in the past. This fact is exploited on a large
scale in digital computers, where data and the instructions about what to do with
these data are stored in the computer's memory. Memory is needed in a less
obvious way to accomplish the necessary control within a computer. For instance,
as we see in Section 6, even the simple process of counting requires memory in
an elementary form.

"Memory" circuits are widely used in everyday life. There are circuits
at the telephone exchange which remember the individual digits one by one as
they are dialled, until the dialling procedure is completed. When you push the
"Up" or "Down" button to call an elevator to your floor, you do not have to continue
to press it because there are circuits which remember which button was pushed.
At many pedestrian crossings there are traffic lights which can be changed by
pushing a button. The circuits for these are often designed so that a pedestrian
can push the button and cause the light to change immediately to "Red" for the
automobile traffic. If a second pedestrian pushes the same button a fraction of a
minute later, the light will not change at once because the circuit has been de-
signed to remember that the button was pushed less than, say, one minute ago.
When the one-minute interval is over, however, the circuit remembers that the
button has been pushed a second time, and it will again turn the light on.

None of the circuits discussed in the previous chapter on logical design
had memory of the kind illustrated:-above. The lamp controlled by the majority-
vote circuit lighted or did not light in accordance with the present positions of its
switches and was not affected by what settings these switches might have had in
the past. The hall-light, odd-parity circuit was affected only by the present status
of its switch positions and not by what happened to these switches previously. The
adder circuit delivered its answer independently of the past history of its use. In
the following sections we examine circuits that store the evidence of past events.

In human beings and in computers the words "memory" and "state" are
very closely associated with each other. Out mental state changes as the result of
experience and this change usually involves the memory of that experience. Human
memory is a complicated and subtle thing to define or to localize. The state of our
brain seems to depend upon the chemical and electrical states of its billions of
neurons. We have not been able to identify any specific area of the brain as the
repository for memories of past events. No surgeon has been able to eradicate
the recollection of a predetermined single specific event by cutting into some
specific area of the brain.

In our understanding of computers we are in a much more favorable situation
because it is we who have controlled how the computer elements are interconnected.
We also know exactly how the states of the computer elements are determined and
how they can be changed. Though there are a legion of magnetic and electronic

A-4.1
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devices that can be used for computer memory, in this course relays and the
contacts on these relays will be used. The remainder of this chapter is devoted
to investigating the use of relays for the simple memory functions required in
computers.

2. MEMORY AND FEEDBACK

Circuits with two stable states

The basis for memory in relay circuits is illustrated by the pair of circuits
shown in Fig. 1. In each of these a single contact (the "holding" contact) on a relay
controls the current through that same relay. In the series circuit there are two
possible states for the circuit. If the make contact "p" is open there is no path for
current through the winding. Therefore, the relay will remain released. If, on
the other hand, the relay somehow becomes operated, the contact "p" will be
closed and a path for current through the winding will be maintained. In either
case the holding contact assures that the relay will remain in the state (operated
or released) it is set in, and consequently the circuit is stable.

0 x

P

(a) SERIES CONTROLLED

P

(b ) SHUNT CONTROLLED

Fig. 1 Relay circuits with two stable states

0

In the shunt-controlled circuit there are also two possible states, both
stable. If the relay is initially in the released state the break contact "p" will
be closed and current will be shunted around the relay winding; this will cause
the relay to remain in the released state. If the relay is originally operated the
"p" contact will be open and the relay will continue to be operated.

A-4. 2
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The circuits of Fig. 1 are not very useful but they do illustrate that a
single relay, controlled by one of its own contacts, exhibits elementary memory.
If the armature of either relay is set to the operated position it will remain there
indefinitely. If the armature is pushed to the released position the relay will also
remain in that state. The relay "remembers" in which position its armature was
last set. In Section 3 we discover methods for setting the state of the relay
circuit which do not involve pushing and pulling on the relay armature itself.

Buzzers

A relay may be controlled by its own contacts so that it is unstable rather
than stable. In Fig. 2(a), assume that the relay is released. The break contact
"p" will then be closed and there will be current in the relay winding. As soon
as the pull on the armature is great enough the relay will operate and the contact
"p" will open. With this contact open the current in the winding will be reduced to
zero, and the relay will release. This cycle of events will occur again and again
(with most relays, between about five and fifty times a second) and the relay will
act as a buzzer.

0

P

I I

0

(a) SERIES CONTROLLED

0

1

P

X

( b ) SHUNT CONTROLLED

Fig. 2 Relay circuits with two unstable states.
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Another buzzer circuit [Fig. 2(b)] uses a make contact to shunt-control
a relay. Again neither the operated state nor the released state of the relay is
stable and the relay will buzz.

The distinction between energizing and operating a relay

The simple circuits shown in Figs. 1 and 2 illustrate that a relay controlled
by one of its own contacts may have memory or may buzz. Which action occurs
depends upon the type of contact and its connection to the relay armature. In such
circuits, it is important to distinguish between a relay being operated and being
energized.

A relay is operated or released depending upon the position of its armature
and therefore depending upon the states of the contacts coupled to the armature.
A relay is energized if there is 'a path for current through the relay winding; other-
wise the relay is de-energized. For example, in the buzzer circuits of Fig. 2, an
operated relay may be de-energized, and a released relay may be energized. Both
of these conditions are unstable because a de-energized relay will release and an
energized relay will operate. In either case, it takes some time for the release
or operate action to take place. Usually these "release" and "operate" times are
fractions of a second. Circuits with holding contacts Fig. 1) illustrate that the
released state of a relay is stable if the relay is also de-energized and that the
operated state is stable if the relay is energized at the same time.

- The necessary distinctions are further emphasized by letting lower-case
letters represent the state of the make contacts on a relay (they reflect whether
the relay is operated or released) and the corresponding capital letters represent
the state of the relay winding (energized or not) as reflected by the state of the net-
work which would be used for series control of the relay. That is,

p = 0 means that the relay is released
p = 1 means that the relay is operated
P= 0 means that the relay (winding) is de-energized
P= 1 means that the relay (winding) is energized

For the stable circuits in Fig. 1, P = p, implying that when the relay is energized,
the relay contact is closed. For the unstable circuits in Fig. 2, P = p.

Note that in the circuits of Figs. 1 and 2, the relay contacts control the
state of the relay winding, and vice versa. This situation is an example of feedback.
A contact network controlling. current through a relay winding is suggested in Fig.
3(a). The flow of influence is illustrated in Fig. 3(b). The state of the relay
winding is "fedback", influencing its contacts which in turn influence the state of
the winding (energized or not). The ideas of feedback and stability are taken up
in greater detail later in the course.

3. CIRCUITS HAVING STATES WHICH CAN BE CHANGED

Memory circuits which are more useful

The preceding discussion indicates that the state of a memory circuit can
be changed by opening or closing contacts in the controlling network. If these
contacts are not all on the memory relay then the memory state can be controlled

A-4. 4
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(RELAY P

by a switch whose state is not affected by the memory relay. In terms of Fig.
3(b), such a switch is outside the feedback loop, though its contacts would appear

I CONTACT NETWORK
CONTROLLING THE
ENERGIZAT:ON OF P

(MAY CONTAIN TYPE
p AND 71?" CONTACTS )

P

(a)

CONTACTS CONTROL ENERGIZATION OF P

CONTACT NETWORK
CONTAINING CONTACTS
OF TYPES p AND p

RELAY CONTROLS OPERATION OF
CONTACTS p AND p

(b)

Fig. 3 Schematic diagrams demonstrating feedback
in relay circuits.

in the box marked "contact network". The six circuits in Fig. 4 are completely
equivalent with regard to how the state of the relay (operated or released) depends
upon the opening and closing of the contacts on switches A and B, which are out-
side the feedback loop. Imagine that switches A and B are to be operated as
"push buttons". That is, each switch is operated only while it is being pushed.
When the pressure is removed the switch is released again.

A-4. 5
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( a ) (b)

AIM

P

ffJ

(c) (d)

P

(e)

b

a

Pff+
-.4\AA,-0

(f)

Fig. 4 Six equivalent circuits with two-state memories.

With neither switch A nor switch B operated, the "a" and "b" contacts are
open and the "a" and "17" contacts are closed. The effect in the circuits (a), (c)
and (e) of the figure is to place a "p" contact in series with the relay winding; in
those of parts (b), (d) and (f) the effect is to place a "p" contact in parallel with
the winding. In all six cases the resulting circuit is stable and the relay can be
in either its operated or its released state. (Recall Fig. 1).

A-4. 6
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We describe in detail what happens only to the circuit in (c), which uses
a combination of series and shunt control. (The states of the other five circuits
depend upon the states of the A and B switches in exactly the same way as does
the state of the (c) circuit. ) If switch A is now momentarily operated the relay
P will be energized (regardless of its state of operation) and eventually it will
become operated. That is, its "p" contact will close. If switch A is released
the relay will remain operated because "p" is now closed.

To change the relay from the operated to the released state, operate the
B switch momentarily. The closing of the "b" contact provides a shunt around
the relay winding and the relay will be de-energized and will eventually release.
That is, the "p" contact will open. If switch. B is released the relay will remain
released because "p" is now open.

The momentary operation of the switch A allows us to "store a 1" in the
relay circuit. The left hand side of the relay is called the "make" side. The
momentary operation of switch B allows us to "store a 0" in the circuit. Thus
the righthand side is known as the "break" side. As long as neither switch is
operated the relay will continue to remain in the state in which it was last placed.

The simple circuits in Fig. 4 are also some of the most useful. The one
shown in part (c) is used as the basis of our computer memory. Also this circuit
can be used to remember that an elevator has been called by a person wishing to
use it. The "elevator button" pushed by the prospective passenger is switch A.
The relay P could be used to control a light showing that the button has been pushed.
Switch B is the one operated automatically when the elevator arrives at the calling
floor. Switch B remains operated until the elevator leaves that floor. Switch B
is usually operated by the movement of the elevator itself, and it is customarily
put inside the elevator shaft where passengers cannot see it.

The same circuit may be used as a burglar alarm. Switch A is placed
where a burglar will unwittingly step on it (for instance, under the mat just inside
the front door of the store we wish to protect). A bell, which rings wheOever the
relay is operated, is added to the circuit (it should be connected in parallel with
the winding of the relay). Switch B is used to turn off the alarm bell after the
burglar has been captured and the store owner has grown tired of the sound. (Some-
times B is called a "reset" switch since it restores the circuit to its "alert"
condition. )

Analysis by tables of combinations

A properly compiled table of combinations can indicate clearly how the
energizing of the relay P depends upon the states of its contacts and of switches
A and B. Consider the series-controlled circuit in Fig. 4. As usual, make a
list of all possible states of contacts a, b, and p as in Fig. 5. For each set of
states, it is a straightforward matter to determine if the circuit is open or closed,
and so if the relay is energized or not. If the relay is energized, enter a "1" in
a new column labeled P; otherwise enter a "0" in it.
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a P

0 0 0 0 stable
0 0 1 1 stable
0 1 0 0 stable
0 1 1 0 unstable
1 0 0 1 unstable
1 0 1 1 stable
1 1 0 0 stable
1 1 1 0 unstable

Fig. 5 A table of combinations for the circuits of Fig. 4.

Remember that when the values of "p" and of "P" are the same, the circuit
is in a stable state. Whenever "p" and "P" have complementary values, the circuit
is unstable. For example, the fourth row of the table tells us tn.at if a = 0, b = 1,
and p = 1 the contact network which controls the relay is open (P = 0). But if the
network is open the relay is de-energized and the relay, which is presently
operated (p = 1), will become released (p = 0). The arrow in the table indicates
that the circuit will go to the state a = 0, b = 1 and p = 0. This state is stable.
The circuit will remain in this state until both switch A and switch B are changed.

For example, start with the circuit in the stable state shown in the top row
of the table, a = 0, b = 0 and p = 0. Operate the switch A; the circuit temporarily
goes into state a = 1, b = 0 and p = 0; this state is unstable. The action of the relay
itself will cause the next state to be a = 1, b = 0 and p = 1; this state is stable. If
switch A is released again the stable state a = 0, b = 0 and p = 1 will result. The
momentary operation of the switch A has stored a. "1" in the circuit. To change
the state of contacts on the relay it was first necessary to put the circuit into an
unstable state; from the unstable state the action of the circuit itself caused the
relay to change its state of operation.

Analysis of feedback logic circuits by the use of tables of combinations be-
comes more and more complex as the number of relays increases. However, the
principles are the same as those illustrated by our simple circuit. We have occasion
to analyze only one such complex circuit.

4. AN ADDRESSABLE MEMORY

The simple circuit of Fig. 4(c) could store a "0" or a "1 ". When the switch
A (connected to the make side) was operated and released a "1" was stored. (that is,
the resulting stable circuit state had p = 1). When switch B (connected to the break
side) was operated and released a "0" was stored (that is, a stable state in which
p = 0 resulted). That circuit has been redrawn in a slightly different form in
Fig. 6(a). A light bulb has been added in parallel with the relay winding so that
we can sense or read the state of the relay by looking at the corresponding state of
the bulb.
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Fig. 6 One-bit memories.
(a) A single one-bit memory cell.
(b) Four addressable one-bit memory cells.
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In a computer we want to be able to store and read binary digits (commonly
called bits) in any one of many different memory circuits, In order to do so we
must be able (1) to select the appropriate circuit, and then (2) to set the selected
circuit to the desired "0" or "1" state. The arrangement of Fig.-61b) shows four
separate memory circuits, P, Q, R, and S, each capable of storing a single bit,
and two selection trees similar to those discussed in Section 3 of Chapter 2. By
setting switches C and D appropriately the make tree selects the make side of a
specific relay while the break tree simultaneously selects the break side of the
same re] ay. After this selection has taken place the actual setting of the selected
relay is accomplished by connecting either the root of the make tree to minus (by
operating A, thereby storing a "1") or the root of the break tree to minus (by
operating B, thereby storing a "0"). Clearly A and B should not both be operated
simultaneously. Since a unique path is set up between the root of the make (or of
the break) tree and the chosen relay, none of the other relays are connected to
minus (unless through their holding contacts). Thus theft- states are not changed
by the operation of A or B. To record a "0" or "1" bit in another cell, the two
step process is repeated by selecting the desired relay with tree switches C and
D, and setting the correct state with input switch A or B.

By using selection trees constructed from more switches we may address
a larger number of memory relays. Nine switches would allow us to choose among
29 = 512 different relays. The illustrative computer of .the next chapter has this
number of memory locations.

5. SHIFTING AND SHIFT- REGISTERS

Multiplication in the binary number system

It is useful for a computer to be able to shift the digits in a binary number
to the left or to the right. Shifting is used in multiplying two numbers. For example,
two binary numbers are shown in Fig. 7. The decimal number 27
( = 1.16 + 1'8 + 0-4 + 1.2 + l 1) is the same as the binary number 11011. The
decimal number 23 ( = 116 + 0-8 + 1-4 + 1.2 + 1-1 ) is equivalent to the binary
number 10111. Figure 7(a) shows how the clerical work required for multiplying
these two numbers might be written. There are five digits in N. Thus, five
numbers, each of which is a shifted version of M multiplied by an appropriate digit
of N, must be added together to form the product. Remember that in binary multi-
plication:

1 x 1 = 1
0 x 1 = 0
1 x 0 = 0

x 0 = 0

So in multiplying binary numbers, only shifted versions of one number and rows of
all zeros will be required. This fact is illustrated in Fig. 7(a), where four shifted
versions of M (= 11011) and one version of 00000 are added to form the product.

Another method of multiplication, one used in computers, is known as
"partial sums". This method is illustrated in Fig. 7(b). The same five numbers
are added together, but one at a time rather than all five simultaneously as in
Fig. 7(a). Thus there are four "partial sums", each the result of adding the

A-4.10
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previous partial sum to a shifted version of M, multiplied by one digit of N.

Shifting binary numbers in a computer is accomplished using a circuit
with memory called a shift register. This circuit stores a binary number, such
as 11011, and on command can shift it so as to create, for example, 110110.

Weights: 256 128 64 32 16 8 4 2 1

M =27: 1 1 0 1 1

N= 23: 1 0 1 1 1

1 1 0 1 1 = 1. 1. M

1 1 0 1 1 (0) = _ 1. 2 M

1 1 0 i1 1 (0 0) __ 1. 4. M

0 0 0 0 0 (0 0 0) = _ 08M
1 1 0 1 1 (0 0 0 0) = - 1. 16. M

(Add the five numbers above to Sum equals
obtain the desired product. ) 23 M)

(a) How to form the desired product.

Weights: 512 256 128 64 32 16 8 4 2 1

Initial partial sum: 0 0 0 0 0

+ 1 1 0 1 1 = 1. 1.M

First partial sum: 1 1 0 1 1

+ 1 1 0 1 1 (0) = 1. 2M
Second partial sum: 1 0 1 0 0 0 1

+ 1 1 0 1 1 (0 0) = 1.4M
Third partial sum: 1 0 1 1 1 1 0 1

0 0 0 0 0 (0 0 0) = 0. 8 M

Fourth partial sum: 1 0 1 1 1 1 0 1

+ 1 1 0 1 1 (0 0 0 0) = 1 16M
Final sum: 1 0 0 1 1 0 1 1 0 1 = 621

(b) The building up of the product by partial sums.

Fig. 7 The use of shifted binary numbers in forming products.

A single shift-register stage

Shift registers are built from nearly identical smaller circuits. The
basic circuit for shift-register is shown in Fig. 8(a). This circuit can store one
bit. When switch S is operated the negative terminal of the electrical source will

A-4.11
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be connected to the left terminal of the relay if a = 1, and it will be connected to
the right terminal of the relay if a = 0 (if a = 1). Therefore, when S is operated,
the state (operated or released) of the relay will be the same as the state
(operated or released) of the switch A.

P

0
S
X

(a) A Simple Memory Circuit,

11111.

0=ammX

P

1

Q

(b) A single shift-register stage.
Fig. 8 Basic circuits for the shift-register.

A-4. 12
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When the switch S is released the contacts "a" and areare effectively in
series. Regardless of the state of switch A, therefore, no path can be completed
through both of these contacts. Thus, when switch S is released the relay is
controlled by its own holding contact, p. The value of the bit stored in the relay
depends, therefore, upon the previous history of the circuit.

A bit of information is stored in the circuit as follows: with the switch
S released, set the state of switch A to the value we want to store (1 or 0). The
relay will, for the time being, remain in its original state. The state of switch
A can be stored by operating and then releasing switch S. After switch S is re-
leased, switch A can no longer affect the state of P.

The basic action of shifting a stored bit from one relay to another requires
a second circuit almost the same as the one discussed above [see Fig. 8(b)] .

Consider what happens when S is released. The relay P will be operated or re-
leased, depending upon the value of the bit stored there. The state of Q will be
the same as the state of P because, with the contact "s" closed, the state of the
"p" and "p" contacts determine the state of Q. With the circuit in this state we
may set the switch A to either state without affecting the states of either P or Q.

wing

STAGE 4 STAGE 3

P8 hi
Q8

4
04

STAGE 2 STAGE I

P2

Q2

PI

Qi

(a) A cascade connection of four shift-register stages.

Initially:
After 1st shift:
After 2nd shift:
After 3rd shift:
After 4th shift:
After 5th shift:
After 6th shift:
After 7th shift:
After 8th shift:
After 9th shift:

(b)

Q256 Q128 Q64 Q32 Q16 Q8 Q4 Q2 Q1
A

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1 1 0

0 0 0 1 1 0 1 1 0 0

0 0 1 1 0 1 1 0 0 0

0 1 1 0. 1 1 0 0 0 0

1 1 0 1 1 0 0 0 0 0

An example of the shiftirg action.
Fig. 9 Illustrating the action of a shift-register,
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Set A to some new value to be stored on P and then shifted to Q. With A
in its "new" state, operate S. In the upper half of the circuit this causes P to
become operated in the same way that A is operated. With S operated, however,
the contact "s" in the lower half of the circuit will be open and the relay Q will
retain its former state. Now release S once again. The value stored in the
upper half of the circuit in the relay P will be passed on to the relay Q. After
switch S is released, the state of A can be changed once again without influencing
the state of P. The original state of operation of the A switch has been shifted
through the P relay to the Q relay.

A complete shift-register

A shift-register can be made by cascading several copies of the circuit in
Fig. 8(b). The circuits are connected as suggested by the diagram in Fig. 9(a).
Each of the pairs of relays in a stage of the shift-register has a subscript which
denotes the significance of the binary digit stored in that stage. The shifting
signal, S, actuates all of the stages. Each time it changes from "0" to "1" and
back to "0" the bit value stored in each stage is shifted one stage to the left. The
example in part (b) of the figure shows how the number 1 1011 is inserted into the
register one bit at a time by properly setting the switch A for each shift. Further
shifting moves that binary number still further to the left so that it can be in
proper location for being added into a partial sum (see Fig. 7).

The more detailed circuit diagram of Fig. 10 shows four stages of the
shift-register. Note especially that the "q" contacts from one stage are used
in the next stage in the same way that the "a" contacts are used in the first stage.

6. CIRCUITS THAT COUNT

The analysis of a single counter stage

Counting is a fundamental operation in a computer. A counting circuit,
usually called a counter, is the means for carrying out this function. A counter
furnishes as its output a set of binary digits representing a number. This
number can be increased by one by an input signal to the counter. The binary
digits at the counter output can be used to set the address of a memory cell,
using a selector tree, just as the switches C and D did in Fig. 6(b). It is also
useful to be able to set the counter to a desired number on certain occasions.
All these features can be incorporated into a single counter.

A -4. 14
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STAGE I

STAGE 2

P8
STAGE 3

Q4

STAGE 4
Fig. 10 Circuit diagram Nr a shift-register.
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One stage of the counter is shown in Fig. 11(a). (The counter itself will
be made by cascading several similar stages, just as in the shift-register. )

The only contacts which can be controlled from outside the circuit are the two
"a" contacts. We can see from the circuit diagram that the relay P will be
energized if and only if "a" or "p" is closed, and if "a" and "q" are not closed.
This information is listed in the "P" column of the table of combinations in
Fig. 11(b).

Is,

0

X
a

X

(a) The circuit diagram.

a p q P Q

0 0 0 0 0 N

0 0 1 0 0 I/

0 1 0 1 1 4\

0 1 1 1 ld
1 0 0 1 0

1 0 1 0 1

1 1 0 1 0

1 1 1 0 1

q

stable
Q is unstable
Q is unstable
stable
P is unstable
stable
stable
P is unstable

(b) The table of combinations.

Step: (0) 1 2 3 4 5 6 7 8 9 10 11 . . .

a: 0 1 0 1 0 1 0 1 0 1 0 1

p: 0 1 1 0 0 1 1 0 0 1 1 0

q: 0 0 1 1 0 U 1 1 0 0 1 1

(c) A summary of the action of one stage of the counter.

Fig. 11 The analysis of one stage of a "counting" circuit.
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The conditions for energizing the Q relay can be stated similarly. The
circuit indicates that "Q is energized if and only if "a" and "q" are closed (q is
open), or if "a" is open and "p" is closed". This information is listed in the
"Q" column of the table of combinations.

Remember that if a relay is energized and operated or if it is de-energized
and released it is in a stable state. Otherwise the relay is in an unstable state.
The table of combinations shows that four of the eight circuit states are stable;
that is, for these states P = p and Q = q. One or the other of the relays is un-
stable for each of the other four states. The arrows indicate which stable state
follows each of these unstable states.

The table of combinations specifies what happens when the switch A is
alternately operated and released. Assume that the switch and both relays are
released; that is, that the state of the circuit is "000" ( a = 0, p = 0 and q = 0 ).
When A is operated the state becomes "100", an unstable state, which leads to
the stable state "110". When A is now released the state becomes "010", which
leads to "011". If switch A is operated a second time the state becomes "111"
and this leads the circuit to the stable state "101". Another release of A leads
the circuit through "001" to "000", the initial state. Further opening and
closing of the "a" contacts causes a cyclic repetition of these four stable states
to occur. The reader should review the cycle of actions by tracing paths through
the various contacts in the circuit itself to see how the relays are energized and
operated, de-energized and released.

A summary of the actions of relays P and Q is shown in Fig. 11(c). For
brevity only the cyclic sequence of the four stable states is given. Notice that
it requires two openings and closings of the "a" contacts to cause one opening
and closing of "q".

A multistage counter

Any number of the circuit stages shown in Fig. 11(a) can be cascaded to
form a counter. The circuit of Fig. 12(a) has three stages interconnected.
(The subscripts indicate the "weight" of the binary digits generated at each
stage. Ignore the dotted part of the circuit for now. ) Notice that the opening
and closing of the "qi" contacts in the second stage influence that stage in the
same way that the optning and closing of the "a" contacts did in the first stage.
In the next stage the "q2" contacts serve similar purposes. Part (b) of the
figure shows schematically how one stage influences the next.

When the several stages of a counter are interconnected two openings and
closings of the "q" contact from one stage cause the "q" contacts in the next stage
to open and close just once. This fact is summarized in Fig. 12(c). Finally,
notice that the values q4, q2 and q

1
are a sequence of three-digit binary numbers

which starts at 000 and progresses through 001, 010, 011, 100, 101, 110 and
111. The cycle of actions is then repeated. In effect, the circuit "counts" how
many times the A switch has been operated. The q relays provide the counter
output. A counter with M stages can count from 0 through 2M-1.
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(a) The circuit diagram

Fig. 12 A three-stage resettable counter
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qr 1 q4

P8 17
I (4

NUMBER
OF

P4 P2

Q4 02

P1

Q1

a

(b) Illustrating the influence of one stage of the counter
upon the next

.a. PULSES 0 1 2 3 4 5 6 7 8 9

a 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

ql 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

q2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0

q4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0

A

(c) Summary of the actions of a three-stage counter circuit.

Fig. 12 A three-stage resettable counter

Clearing and resetting the counter

When the "clear" and "set" switches, which control the corresponding
contacts (shown dotted) in the circuit of Fig. A-12(a) are released the circuit
operates as a three-stage counter as just described. The "clear" switch sets
the count to zero when it is operated and then released, for the break contact
it controls is in series with the rest of the circuit. After the clear switch is
released it is possible, by closing the make contacts controlled by the "set"
switch, to set the count directly to any number. If, for instance, the count is
to be set to "5" (represented by q4 = q7 = and q = 1) the "w" contacts arel
set to w 4 1,= 1 w

2
= 0 and w

1
= 1. Next, the "set" contacts are closed and re-

opened. This action produces the same effect as if the "qz" and "a" contacts
were closed and reopened. In other words, in the resulting state of the circuit,
the count in the first stage will be "1" (p1 = q1 = 1), in the second stage "0"
(p2 = q2 = 0) and in the third stage "1" (p4 = q4 = 1).

A counter can be used to control a "tree" circuit. The diagram in Fig.
13 demonstrates how the "q" contacts from three stages of a counter can control
a tree. When the switch A is operated and released the count is increased by
one and the completed path in the tree is connected from the "base" of the tree
to the terminal of the right which has the next greater number.

Since the switch A is operated and released twice for each operation of
Q contacts from Q2, Q

1
and A could be used in the tree instead of those from

Q 1

4'
' Q

2
and Q1, respectively. (Exactly this is done in the circuit of Fig. 14(b)]
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0

q4
X

P4

Q4

#O

#1
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*3

1

P2

Q2

q1

0

THREE STAGE COUNTER

Fig. 13 A counter-controlled tree.
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In that case only one change in the state of A--rather than two-- is necessary to
advance the closed path to the next terminal.

Trees controlled in this way are used in addressable memories [see
Fig. 6(b1, and permit examination of memory locations one after another. To
"jump" to any particular memory location,clear and reset the counter to the
appropriate number. It is in just such a way that the memories of computers
are "addressed". Another use of counter-controlled trees is examined in the
next section.

7. SYNTHESIS OF AN AUTOMATIC MORSE CODE TRANSMITTER

A computer is "programmed" by ordering it to perform, in sequence, a
number of elementary operations, such as "add", "subtract", "store the result",
"get a new number from the input", "send a number to the output"--and so forth.
In order to carry out even one of these simple operations, a timed sequence of
connections must be made among the various circuits of the computer. Each
sequence may consist of several steps. The circuit which "translates" each
elementary operation into the corresponding sequence of actions is called the
"operation decoder". The particular operation desired at any time is specified
by a binary number or "code". If there are eight possible operations, the states
of three switches are sufficient to specify one of the eight. The crucial point is
-that a binary number, in the form of switch settings, can lead to a sequence of
actions. Each different setting specifies a different sequence.' A circuit which
is very close to the decoder in its principle of operation is one which gives a
sequence of "dots" and "dashes" (on lamps) corresponding to the Morse code for
eight English letters. The table in Fig. 14(a) shows the sequence of dots and
dashes corresponding to the letters A through H. Settings of switches X, Y, and
Z which correspond to these letters are given in the column labelled "binary
code".

Assume that there is available a counter-controlled tree built from contacts
on relays Q9 and and switch A of the counter circuit discussed previously.
During eight' successive time intervals, operate ard release switch A to connect
the eight tree terminals successively to the tree base. This action is indicated
roughly in the left part of Fig. 14(b). The Morse code output is to be produced on
the lamps at the right, as the tree is cycled through its eight connections. The table
in Fig. 14(a) indicates which positions are to light "dot" and "dash" lamps.
Another lamp, called the "start" lamp, is to be lighted in interval #0 to indicate
the beginning of the Morse code representation for each letter.

The complete Morse code transmitter requires a group of contact networks
from the switches X, Y and Z to be placed between the tree terminals and the
three lamps. The specifications of these networks can be determined from the
table. For instance, the table tells us that in time interval #1 there is to be a
connection to the "dot" lamp when both "x" and "z" have the value "1". A simple
series circuit of the two corresponding make contacts, placed between terminal
#1 of the tree and the "dot" lamp, will do the job.

The reader should verify that the contact networks shown in Fig. 15 do
yield the appropriate light sequence as given in the table. Consider one of the
more complicated networks, that for the "dot" lamp in interval #7. There are
four combinations of the values of X, Y and Z for which the lamp should be
lighted; and correspondingly for which there should be a connection between
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binary code
letter X Y Z

A 0 0 0

B 0 0 1

C 0 1 0

D 0 1 1

E 1 0 0

F 1 0 1

G 1 1 0

H 1 1 1

Morse code output
time interval

1 2 3 4 5

MINIUM

(a) A table showing Morse code for the letters
A through H.

COUNTER -
CONTROLLER
TREE

(CONTACTS FROM

Q2, Qi AND A)

3

4

5

6

NETWORKS
OF
CONTACTS
FROM
SWITCHES
X,Y AND Z

(b) Block diagram of the circuit.

rt.) START LAMP

oMIIMIT

DOT LAMP

DASH LAMP

+

Fig. 14 Specifications for a Morse code transmitter.
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1
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Fig. 15 The contact networks for the Morse code transmitter.
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terminal #7 and the dot lamp. These are

X, Y, Z: 001, 010, 101 and 111.

Notice that the corresponding network should be closed whenever Y = 0 and
Z = 1, regardless of the value of X; also, that it should be closed when X = 1
and Z = 1, regardless of the value of Y. (The case X = 1, Y = 0 and Z = 1 is
covered by both statements; each statement is valid nevertheless. ) Finally,
when X = 0, Y = 1 and Z = 0 the network is to be closed. Summarizing, the
network should be closed between the #7 terminal of the tree network and the
"dot" lamp whenever

Y=0 and Z=1, or X=1 and Z=1, or X=0 and Y=1 and Z=0.

The network, then should consist of three parallel branches, each with a series
of contacts as follows: (1)' y, z; (2) x, z; and (3) x, y, z.

8. SUMMARY

There are a variety of logic circuits with memory which are important in
designing computers. These include the shift register, which is useful for
shifting binary numbers to determine products. The binary counter can "count"
to 2M-1 with only M circuit stages, each identical to the others. Operation de-
coding circuits can be designed to translate binary numbers specifying basic
computer operations into the sequence of actions necessary for carrying out the
individual steps of those operations.

The single most critical logical circuit with memory is also the simplest
[Fig. 6(a)]. When sufficient numbers of them are brought together, they can store
an indefinitely large number of bits. These can be changed when necessary and
can be grouped so that individual groups can be read by a single address number.
The addressable memory is the heart of the stored-program computer which is
investigated in the next chapter.

A-4. 24
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PROBLEMS

4-1 In the two circuits below, discuss what happens when,starting with
the condition that relay P is released, the switch A is operated.
What happens when, starting with condition that P is operated, A
is released?

0

['If 1P
0

ifriLLAA

Ip

4 -2 Analyze the operation of the following two circuits: that is, describe
step-by-step, starting with all switches and the relay unoperated,
what happens when
(a) switch A is operated and then switch B is operated;
(b) switch B is operated and then switch A is operated.

>a( b

i4t:11P

(b)

4 -3 In each of the three circuits below analyze what happens, starting with
both switches and the relay unoperated, when
(a) switch A is operated and then released, then switch B is
operated and then released;
(b) switch B is operated and then released, then switch A is
operated and then released.

(a) H a

p
X

(c)

P

4-4 Explain the operation of the two circuits below.

I r'S P
L_-(1;
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4-5 In the circuit below,switch A has been released for a long time, and

then it is operated. What are the possible resulting states of opera-
tion of the relay P ? Explain.

a P

a 13

j 1P

4-6 A bimetallic strip controls a contact, t, so that when the temperature
is high the contact is open and when the temperature is low the contact
is closed. The contact is placed in series with a resistor, R , the
heat from which can raise the temperature of the bimetallic strip.
Explain what happens when the circuit is in operation over an extended
period of time. Would you call this a stable or an unstable circuit ?

Why ?

4-7

R

t

Two bimetallic strips control two contacts t1 and t? (when the
temperature at a strip is high the contact is open; when the tempera-
ture is low the contact is closed). The resistor R1 is placed next to
contact t1 so that when current flows in R

1
the temperature at t1 is

raised. How would you expect the circuit to behave over an extended
period of time ? Would you call this circuit stable or unstable ?
Discuss. ti t2

0

4 -8 Discuss what conditions are necessary to turn the lamp L on and off
in the following two circuits.

(a)
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4_9 The following circuit is used to determine which of two contestants in
a T. V. quiz show operates his switch first. Discuss the operation of
this circuit assuming that switch C is released. What is the probl,.
able purpose of switch C ?

a q

0

4-10 Discuss how to operate the switches A and B to turn the lamp L on
and off in the circuit below. If the relay and switches are initially
unoperated what is the shortest sequence of operations which will turn
the lamp on?

0

0
a

4-11 (a) Describe the shortest sequence of operations of switch A which
will cause the lamp L to be turned on. Assume that all switches
and relays are initially unoperated.
(b) How can the lamp be turned off again?

o

;D<

a

X
a

(11 L

o X

4-12 Refer to Fig. 6 of the text. Recall that 0's and l's can be
stored by operating and releasing switches A and B, and that the
states of operation of C and D determine the address at which data
are stored or sensed. For all parts of this problem assume that all
switches and relays are initially unoperated.
(a) What and where is information stored when the switches D and
A are operated (in that order) and switch A is released?
(b) What and where is information stored when C is operated, A is
operated and released, and B is operated and released (in that order)?
What sequence of operations is necessary to

P

0

0+
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(c) store a 1 in the relay S ?
(d) store a 0 in the relay R ?

4-13 Describe the sequence of operations that are necessary to turn on the
light in the following circuit. Give the reason for each operation.

4-14 The switches in the following circuit are operated in the following
sequence:

a:
b:

1 2 3 4 5 1 6 7 13 14

0

0

0

1

1

1

1

0

0

0

0

1

1

1

0

0

0

1

Describe how the relays P and Q operate and release, and how the
number of times they operate relates to the number of operations of
switches A and B.

ct

4-15 Describe, step-by-step, what happens in the following circuit when
switch A is alternately operated and released.

XP
'13

A -4. 28
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Chapter A 5
THE ORGANIZATION OF A COMPUTER

1. INTRODUCTION

The basic elements of a general-purpose digital computer are the logic

circuits of Chapters A-3 and A-4. This chapter shows how such circuits can be

connected together and controlled to perform a large variety of tasks, that is, to
form a general-purpose computer. In performing any one of a vast number of
tasks, such a computer differs from its component logic circuits, each of which

is designed for one specific task. In fact, a general-purpose computer can perform

any task which can be specified in detail. The function of this chapter is to explore
the basis upon which such a computer is organized to achieve this objective.
Chapter A-6 explains how one goes about specifying tasks in detail; i. e. , how one
"programs" the computer to execute a particular sequence of simple steps.

The basic quantity processed by mechanical devices such as an electricity
generating plant or an internal combustion engine is energy, the basic quantity
processed in a computer is information. "Data" is often used as a synonym for
"information", and the terms "data processing" and "computing" can be used inter-
changeably. As we saw in previous chapters, by suitable conventions we can let

the state of networks of relay and switch contacts represent arbitrary information,
such as logical propositions, yes and no votes of legislators, binary numbers, etc.
In our computer, we are going to deal with information encoded as 13-bit (12 bits-
plus-sign) binary numbers and processed by binary selection trees, memory cells,

counters, adders, instruction decoders, etc. * Remember, however, that this
decision was a somewhat arbitrary one, and may be easily generalized:

1) the binary numbers and the corresponding circuits could as easily have

been specified as 8 bits long or perhaps 36 bits; computers come in all sizes,
in all sizes, with "word lengths" ranging from 12-bits to 64-bits.

2) moreover, computers need not be restricted to binary numbers, but by

suitable conventions can handle decimal digits or alphabetic characters
as well.

The computer is kept small because we wish to minimize detail. In spite

of its small size, however, this computer illustrates the fundamental concepts

which give any digital computer its power and versatility. In principle, (with
appropriate programming techniques) this little computer is capable of "doing any-
thing" that any "general-purpose" computer can do, and is therefore general-
purpose itself. Futhermore, each part of it could be built in a straightforward way
using the same type of logic circuits that you have met already. How to arrange or
organize these parts into an appropriate whole is the subject which concerns us here.

*This type of computer is called a digital computer, in contrast to analog computers
which represent information not by discrete numbers but by analogous continuous
physical quantities such as length (slide rule) or electrical wave forms (electrical
analog computer of Chapter B-4).
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For the time being, then, we work with 12-bit-plus-sign numbers, which
must be stored and manipulated in the computer. We must also design a means
for "reading" numbers into the computer and "writing" numbers from the computer
onto some external output mechanism.

2. COMPUTING BY MACHINE

Having information in the computer, we want to process or transform this
this information in some way. For example, we may want to add a column of
numbers to obtain their sum, or arrange (sort) numbers so that they are in
descending order from largest to smallest. Computers perform such functions by
taking input information and then processing it according to a prescription, or
program. After the job is completed, the results are given as output. This over-
all process can be described by the diagram in Fig. 1. We say information is
processed according to a plan to yield results.

INPUT
INFORMATION

1111111

PROCESSING OF
INFORMATION
ACCORDING

TO PLAN
OR PROGRAM

RESULTS

Fig. 1 What any computer does

Let us look at a few examples of information processing:

Input
Information Processing

Binary number Calculate decimal
equivalent

Hours worked by
employees during
week

Calculate appro-
priate salaries

Thrust sequence and Calculate orbit
mass of rocket

Geographical positions
of cities to be
visited

Calculate distances
between cities

Result

Decimal number

Payroll checks

Prediction of
satellite position

Route having min-
imum distance

Let us recognize that a computer in performing a complicated task makes
use of the "building block" approach. We saw in the last three chapters how simple
switches and relays could be combined to perform rather complicated tasks. This
is an example of how many simple building blocks, properly assembled, can pro-
duce a whole that in some senses is more than a mere collection of parts. A brick
building is more than a collection of bricks. It is shaped by the architect's plans
into a useful and, one may hope, an esthetic form. Just as brick buildings do not
usually resemble bricks, so machines made of switches and relays can perform
feats far beyond those performed by the independent elements themselves. The
computer, as an aggregate of switches and relays, is much more powerful than
the sum of its parts.

A-5. 2
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In prograrn.ming computers, we apply the same principle, specifying many
simple steps to be executed in sequence in order to perform a complex task. The
"program" is a plan for such a sequence of steps and is reminiscent of a cooking
recipe. There, a sequence of not necessarily appetizing steps, taken in the proper
order and properly executed, can lead to a culinary delight. The necessary
repertoire of basic operations such as addition which computers perform is sur-
prisingly small. To summarize, the basic principle is that the great power and
utility of computers depends merely upon performing a sequence of relatively
simple steps one after another. Later in this chapter we show how the computer
"executes" the simple steps of a program, and in Chapter A-6 you learn how toI

solve problems by writing appropriate programs.

In order to establish what elements are necessary for a machine which
repetitively executes simple steps, let us examine how a routine computing job
might be done by a clerk.

Imagine you are the President of Gidget-Widget, Inc. You are publishing
a new catalog and want to show the list price for each item. To gat the list price
you multiply the sum of the material cost, M, and the labor cost, L, by the
factor 5. 35. (This factor includes overhead, profit, markup for the wholesaler,
distributor, and retailer and enough more so each customer can have a discount. )
Before leaving for the French Riviera to do field observations on customer
reactions to the latest G-W, you call in S. Fast Plodder.

"Stead, I'm going away on urgent business. While I'm gone, I'd like you
to calculate new list prices for our entire line. These sheets contain the catalog
numbers as well as the material and labor costs. This sheet has your instructions."

Plodder is one of your most trusted employees. He is a whiz with a desk
calculator, works rapidly, and never makes a mistake. His only weak point is that
he is not very good at figuring things out for himself; therefore you learned long
ago that you must always give him an instruction sheet.

Let us take a closer look at the sheets. Fig. 2 shows one of the cost sheets
and Fig. 3 shows the instruction sheet. We are going to watch Steadfast very closely
as he does this calculation, and by paying close attention to his every move and
sorting out the important details, we shall see, by analogy, what the functions of a
computer should be, and how the components should interact.

COL. 1
CAT. NO.*

COL. 2
M

002

003

005

007

011

013

017

019

023

Si

0

3

6

10

15

21

28

36

COL. 3
L

$ 2

1

3

4

7

11

18

29

"NO G -W EVER LEAVES OUR FACTORY IN

OT IER THAN PRIME CONDITION"

Fig. 2 Cost sheet.
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. PREPARE A SHEET WITH TWO COLUMNS FOR THE CATALOG PRINTER. LABEL
THE FIRST COLUMN "CATALOG NUMBER" AND THE SECOND "LIST PRICE".

. COPY THE FIRST CATALOG NUMBER FROM THE COST SHEET ONTO THE PRINTER'S

SHEET.

CLEAR YOUR DESK CALCULATOR AND PUT THE MATERIAL COST OF THIS ITEM

INTO IT.

. ADD THE LABOR COST Cr THIS ITEM.

. MULTIPLY BY 5.35.

. WRITE THE PRODUCT ON THE PRINTER'S SHEET UNDER "LIST PRICE".

. COPY THE NEXT CATALOG NUMBER ONTO THE PRINTER'S SHEET.

REPEAT STARTING FROM STEP 3 AS LONG AS THERE ARE UNUSED COST FIGURES.

WHEN YOU HAVE FINISHED PUT THE PRINTER'S SHEET ON MY DESK.
4IIIMM,

Fig. 3 Instructions for S. F. P.

The block diagram of Fig. 4 summarizes the important actions which
Steadfast takes; you should trace through it as you follow the text below.

START

STEPIE

MOVE FINGER
AHEAD ONE

STEP I
READ (AND
REMEMBER)
INSTRUCTION
WHICH FINGER
INDICATED

STEP 8

NO

STEP ICC

CARRY OUT
INSTRUCTION
JUST READ
IN STEP!

YES

STOP

Fig. 4 Plodder's operation cycle.

The first thing he does is sharpen his pencil. (This is unimportant), Next,
he reads the first instruction (important, step I). Before executing this first
instruction (#1), he wants to remember his place in the list of instructions, so he
moves the index finger to his left hand ahead. to the next instruction (#2) (without
reading it), since #2 will be the one he will execute after the current one (#1).
Having thus kept track of where he is (impor;:ant, step II, he now executes the
first instruction (important, step III) by taking a fresh sheet of paper and writing
column headings "Catalog Number" and "List Price" on it. He now checks to see
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whether he is through (important, step IV). Meanwhile, his left index finger is
still pointed at the next instruction (#2) which he now reads as the current
instruction (important, step I). Again, before executing it, he first moves his
finger ahead to what will soon be the next instruction (#3) (important, step II). Now
he executes #2 by copying the first catalog number, 002, from the cost sheet to the
printer's sheet which he prepared in instruction 1 (important, step III). He is not
through (step IV), and since his finger is still pointed at the next instruction (#3),
he now reads it as the current instruction (important, step I). He then moves his
finger ahead to -J4 (important, step II). Hearing thunder, he glanc-ss out the window
and notices it is raining (unimportant). Still remembering #3, he executes it by
clearing the calculator and entering the first material cost, $1. 00, into it (all-
important, step III). After checking to see he is not through (step IV), his finger
tells him #4 is next, S9 he reads it (important, step I), moves his finger ahead to
#5 (important, step II), and adds the first labor cost of $2. 00 to give a total of
$3. 00 in the calculator (all-important, step III).

At this point let us stop and consider the evaluations that we have been
making of the various activities as important or unimportant. For our purposes
an activity is important if without it the computation cannot be done correctly.
For instance, if Steadfast loses his place and repeats or misses an instruction,
the list price he gets will be wrong; hence the finger on the instructions is impor-
tant. From here on we omit Steadfast's actions which are "unimportant" by this
definition.

Returning to our computation, we find that Steadfast reads instruction #5,
moves his finger to instruction #6 and multiplies the $3. 00 in the calculator by
5. 35 to get $16. 05. Following instruction #6, he puts the $16. 05 on his printer's
sheet. Using instruction #7, Steadfast writes 003, the next catalog number, on
the printer's sheet.

Now observe that instruction #8 is different from the others. First
Steadfast has to make a decision to repeat or not depending on whethe7 he has used
all the cost data. Second, if he has not yet finished, instruction #8 in effect tells
him to move his finger back to instruction #3. That is, instruction #8 tells Stead-
fast to use instructions #3 to #8 again. Following instruction #8 Steadfast goes
back to instruction #3 and starts to calculate the list price of the second item.

Let us now consider how we might design a computing machine to do this
type of computation. Remember that although we illustrate the ideas with electro-
mechanical relays and switches, modern digital computers are usually built with
transistors and other solid state devices which are faster, smaller, cheaper,
longer lived and use less power than relays. Their external behavior (as binary,
or 2-state devices) is, however, the same.

In examining the essential features of Steadfast's performance, let us make
a fundamental distinction between the information with which he worked and the
apparatus and materials which he used in the process. The information and the
operations on it are indicated in Fig. 5, which is very similar to Fig. 1.
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CALCULATE
CATALOG NUMBERS

AND COSTS ACCORDING TO
INSTRUCTIONS

INPUT

---OLLIST PRICE]

PROCESSING OUTPUT

Fig. 5 Information Processing by S. Plodder

On the other hand, the apparatus and materials used by Steadfast were: pencils
for writing, paper for recording (remembering) numbers, paper for the instruc-
tion list, and a desk calculator for doing arithmetic. A machine to duplicate
Steadfast's performance must have corresponding equipment; namely, memory
with a means for "writing" information into it electrically, memory for holding
instructions, and a calculator to do arithmetic. The basic organization of such
a machine is shown in Fig. 6. The Control box takes care of routing information
appropriately.

INPUT
MECHANISM

MEMORY
INSTRUCTIONS

AN DATA

CONTROL

ARITHMETIC
UNIT

OUTPUT
MECHANI SM

Fig, 6 Block Diagram of Computer Functions

In thinking of the control function, it may be helpful to liken it to the
operation of a telephone switchboard. The switchboard and operator in the
telephone application connect people who want to talk to each other. The control
function in the computer connects input, output, memory, and arithmetic unit
when they want to "talk" to each other; that is, when information is to be trans-
ferred from one to the other. To duplicate Steadfast's performance, the machine
must:

(1) Enter input information (data) into memory
(2) Calculate according to a plan of instructions in an orderly cycle such

as that of Fig. 4.
(3) Deliver output information.

The five boxes shown in Fig. 6 are the basic components of any modern
digital computer, as well as our own. Let us see how we use circuits previously
designed and some new input/output "hardware" to implement these functions.
You will find that these circuits are essentially unchanged; the only additions are
some contacts to connect the circuits together and to control and time the flow of
information between them.

A -5.6
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3. INPUT AND OUTPUT OF INFORMATION

Information (data) can be stored in many forms other than on switch
contacts. The most common form is the printed page, which in every sense is
an efficient and convenient information storage medium. Information in this form can
be easily read by most people (provided they know the language), but it can be
read only with difficulty by a computer. Computers do not have .eyes and brains
with man's facility for reading the variety of type faces, sizes, and distortions
commonly found in printing. A simple computer-readable information storage
medium is the punched card.

A punched card is effectively divided into, areas, each of which can either
have a hole in it or not; that is, each area can be in one of two conditions, punched
or unpunched. Our computer's card is divided into a single row of thirteen columns,
thus providing thirteen punch areas to represent thirteen-bit binary numbers. A
punched column represents a 1; an unpunched column represents a 0, as shown in
Fig. 7(a).

Fig. 7 Punched card and reader

A-5. 7
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Holes in cards are difficult for people to read. For that reason, most
punched cards have the corresponding digits printed at the top of the card so that
they are easily "man-readable". The computer reads the card by sensing the
positions of the holes (see Fig. 7. A deck of cards is put into a stack, then the
motor-driven belt moves them one at a time under a set of 13 contacts. At the
instant that the contacts are aligned over the row containing the punches, a pulse
of current is sent through the elctrical circuit which runs between the + and -
terminals, and only those relays (CR1 through CR13) will be operated, which
correspond to columns containing punches. Thereby, information can be trans-
ferred from a punched card into relays, or for that matter any other binary
elements.

It is possible, too, to transfer information from relay contacts to punched
cards by means of the card punch shown in Fig. 8.

13
PUNCH

MAGNETS 13
WIRES

Fig. 8 Card punch.

The card punch has thirteen hole punches, each driven by an electromagnet
similar to that in a relay, though stronger. During operation, a motor moves a
blank card from the supply stack to the punches. When the punchers are aligned
with the digit positions on the card, the thirteen electromagnets are selectively
energized (in accordance with binary information) by an electrical pulse on their
windings. This action causes the desired binary number to be punched in the card.
Then the motor moves the card to the output stacker.

Information can also be stored in "machine-readable" form on punched
paper tape or magnetic recording tape, or any one of many other media. All
operate in essentially the same fashion as the punched card except for details of
the recording mechanisms involved.

A-5. 9
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4. MEMORY

Our memory is an expanded version of the circuit of Fig. 6(b), discussed
in Section 4 of Chapter 4, and reproduced below as Fig. 9(a).
This block, i.e., a relay and its holding contact, can be

MAKE BREAK
considered as a single binary (two state) device
whose left hand ems the "1" ("make") input and
whose right hand lead is the "0" ("break") input.
Similarly, the roots of the make and break trees,
identified as X1 and Y1' respectively, can be
considered as input leads or terminals (for "1"
and "0", respectively) to the entire 4 cell circuit.

In our original discussion we stated that "c" and "d" contacts, which make up our
selection trees, were operated by manual switches; but for our computer we control
these contacts by relays. These relays are not illustrated in the diagram, but we

NMI

MAKE SIDE

L
OF P

ri

P BREAK SIDE
-1 OF P

r- .11

BREAK TREE

Fig. 9(a) A 4 cell, 1 bit memory with addressing
(The nodes X1 and Y1 are for future reference)

must keep in mind the fact that somewhere in the computer relays C and D are
present (with their own holding contacts to provide memory), and that by energizing
these relays' properly we may cause contacts "c" and "d" to select one of the memory
cells (P, Q, R, S), where our information bits will be stored. Since the computer
can't identify memory cells with symbolic letters such as P and Q, we refer to the
binary settings of the tree relays as "addresses". In particular, CO,= D= 0
corresponds to address 00, i. e. , to relay P; similarly 01 corresponds to relay Q,
10 corresponds to relay R, and 11 corresponds to relay S. Thus every relay
corresponds to a unique address, and vice-versa.
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To store a "0" or "1" bit at a given address, you remember that we use a
two step process: (1) select the address of the desired relay, and (2) set this relay
to the desired value by connecting its make or break side to minus. Thus, to store
a "1" in Q, i. e. at address 01, we first release C and operate D, to establish paths
from the terminals X1 and Y1 to the relay Q. Fig. 9(b) shows the selected with
heavy lines.

MAKE SIDE
OF P r

-1

C

d r
1

xd
L_ _J

MAKE TREE-

P BREAK SIDE
OF P

Wm/ MEV ./Vo

r

L _

I

L_

-

-J

R
1

- -J L_

d

d

Y1

I0
I

c

d I

TREEBREAK

Fig. 9(b) Address 01 selected; contacts al and b
1

remain open.

b1

To set the state of Q to 1, we now operate the input Al to connect Q to minus.
(Fig. 9(c)) shows a completed make path, and the operated relay Q. (The heavy
line through the relay coil indicates that the relay is operated, note that only the left
path is completed to -).

P BREAK SIDE
OF P

Fig. 9(c) Address 01 set to "1"; contact al closed,
b

1
remains released.

A-5.11
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If we had chosen to store a "0" at Q instead, step 1 (selection) would have been
the same, but step 2 (set) would have been to operate this input switch B, to
release Q regardless of its previous setting. (Fig. 9(d) shows the completed
break path. )

xI.11
Xa

I XC

-a

L _ xd
_J

MAKE TREE-

P BREAK SIDE
-1 lOF P ro

r ONO 411111, ONO ONO

L

-I

L - -J
+

Fig. 9(d) Address 01 set to "0"

Notice that the input terminals X1 and Y1 are the only "handles" on this 4 cell
circuit which can be used to change the states of any of the four cells.

To "read" the contents of a given address we simply select the cell as in
Fig. 9(b): if X1 is connected to an operated relay, X1 will be at minus and the
lamp will light. If X1 is connected 737.7eTeased relay, it is at plus, and the lamp
will fail to light. See Fig. 9(e) Notice that the path from plus, through lamp
L and contact Xi, is always present so that Figs. (b), (c), and (d) should have
included that path - it was omitted for the sake of simplicity.

xd

r-

xd

BREAK TREE-

A-5. 12
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MAKE SIDE
OF P r

P BREAK SIDE
-1 OF P r
.J

Fig. 9('e) Cell 01 selected and read (Q operated)

If we wish to store binary numbers more than 1 bit long in an addressable
memory, we must use additional copies of this circuit. As an example, let us first
store 3-bit numbers, again in one of 4 uniquely addressable locations. Fig. 5.10
shows 3 copies of the previous circuit, with symbolic boxes instead of the actual
relays, and the setting contacts Al and B1, etc., omitted.

A-5.13
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3

-

XI

d

d

$2

--0Y2
Acc

C"

d

Q

.R'3

PM

d

MEMORY
CELL 00

MEMORY
CELL 01

MEMORY
CELL 10

MEMORY
CELL 11

c

Fig. 10 A 3-bit, 4-cell memory (shown symbolically).

There is no direct electrical connection between these 3 circuits; there is,
however, a logical one: a given setting of the C and D relays selects both sides of
the corresporiairiFcell in each of the 3 circuits (clearly, the C and D relays must
have a large number of contacts). For instance, if we release C and operate D we
select cell 01, the next to the topmost cell in each circuit. To symbolize the log-
ical connection between those 3 cells, the three corresponding relays selected by
a single address are designated by a letter (P, Q, R or S) with subscripts (P1P2P3,
Q

1
Q 2

)
To store a 3-bit number, say 101, into cell Q (Q1Q2Q2) we set 01 in the

selection tree relays, and operate the recording relays A., 13'2' and A3,
.respectively. If we make the convention that 13 contacts are in effect break contacts

on the A relays, rather than make contacts on separate relays, then we operate
Al' release A2, and operate A3 to store the pattern 101 on the Q relays. Thus we
have copied the states of the A relays onto the corresponding Q relays. This
copy is the fundamental method by which information (numbers), is trans-
ferred in the computer.

Thus bits don't physically move from one place to another - addressed relays
are set (regardless of their previous states) to agree with the originating relays,
bit by bit, relay by relay, thereby copying the original.

A -5. 14
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For our 13-bit machine 13 replicas of the circuit are needed. Each group
of 13 logically connected cells storing a single number (Q1 Q2

.
Q 13, for example)

is referred to as a memory cell, memory word, or memory register. (The word
"memory" if frequently omitted. ) Again, a given word is located through the trees
by a unique address (01, for example). Now, if we wished more than four words
(1. e., more storage positions), we should expand the trees to include contacts on
three relays: C, D and E, for instance. Three relays provide 23 possible paths,
so that each tree would then select from 8 memory relays. We should then have
13 circuits, however, to provide for the storage of 13 bits: P1 through Pi
Q1 through Q12, ..., V1 through V13 and W1 through W . In general, tAen, k
tree relays and n copies of this type of circuit will provide 2k words, each of
which is n bits in length. Thus nine tree relays, and 13 circuits provide 512
13-bit cells.

5. INPUT AND OUTPUT CONNECTED TO MEMORY

For purposes of llustration, let us see how we might connect our card
reader, card punch and a 4-cell 13-bit memory together. Fig. 11 shows a block
diagram of the circuit. We have labeled the boxes (which stand for pieces of
hardware) with general names but have indicated in parentheses the actual hard-
ware used in this example. The solid lines with arrows running between boxes
show the direction in which signals (binary numbers) are transmitted from box
to box. For instance, a number can go from the card reader to a memory cell
but not from the memory cell to the card reader. Relays I (Input, i. e. read a
card) and 0 (Output, 1. e. punch a card) are used to connect card reader or card
punch at the appropriate time to the selected cell in memory.

INPUT CR
(CARD READER)

OUTPUT CP
(CARD PUNCH)

FtEGISTEFt
SELECTOR

(RELAYS I
AND 0)

MEMORY
CELL

SELECTOR
(RELAYS C

AND D)

MEMORY
CELLS ADDRESS

01

TREE

--.1(RELAYS R1-R13)1 10

agRELAYS S1-513)] 11

Fig. 11 Block diagram of a 4-cell memory connected to a card reader
and a card punch. (The hardware associated with each block
is shown in parentheses.)

An implementation of this block diagram is shown in Fig. 12. We have
started with 13 copies of the circuit of Fig. 9. In this drawing we have removed
the contacts on the relays A and B, which were connected to the information input
nodes X1 and Y1' and replaced them by contacts which will carry information to
and from the card reader or the card punch relays (CR 1 and CP 1, etc. ). In
addition, some control relays used for timing and selection purposes (I and 0)
have been introduced. The operation of this configuration, explained below, is
naturally almost identical to that of Fig. 9.
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To read a single 13-bit word from the card reader into a specific memory
cell, we use the two step select-copy process. First we must select the address
of the cell by selecting a path in the trees, and then read the firsM, 1 or 0
(hole punched or not punched, respectively), into the selected relay on the first
circuit, the second bit into the corresponding relay on the second circuit, etc.
We read the 13-bit word by copying the states of card reader relays onto cell
relays. In detail, the action is as follows:

a) Clear: run the motor on the card reader to move a new card into
the reading position

b) Select: choose a single memory cell by setting relays C and 13 to
thatCTirrs address

c) Copy: momentarily operate connection (timing) relay I (input: i. e.,
read a card), which will close contact i.

If there is a punched hole in the first column of the card, relay CR1 on the
card reader (Fig. 7(b) will be operated, and a path will be established from the
"minus" terminal through make contact cri through into node X1, and then through
the tree to the make side of the selected relay. Furthermore, 'break contact cri
will open, and no path will exist from the minus terminal, through contact i, and
node Yi, to the break side of the selected relay. Thus, a 1 is stored in the
selectei relay. On the other hand, if there is no punched hold in the first column,
relay CR1 will not be operated, and the path from the minus terminal through the
make contact cri, to node X1, to the make side of the relay will be open. How-
ever, break contact cr., will now be closed, so that there will exist a path from the
minus terminal, through contact i, node Y1, through the tree, to the break side of
the selected relay. Regardless of its previous condition, the relay will therefore
be released, and a 0 stored. Also note that there is no path from node X1 through
the make contact o, card punch relay CP1 and the + terminal, since timing relay
0 is not operated while information is being read in memory.

The action described above is simultaneously duplicated for each of the
other 12 card columns and 12 circuit copies. Since the copies are electrically
independent, a pattern of 13 0's and Ps is thus stored in the selected set of relays
(the selected memory cell) corresponding to the 13 card columns. Four numbers
can thus be read into each of the four groups of cells by successive selection and
copying cycles.

In order to connect our memory to the card punch, we have removed the
lamps from Fig. 9. (These lamps, you remember, were used to observe the
number stored in whichever cell was selected by relays C and D.) We have added
another new relay whose make contacts connect the 13 punch magnets CP1
through CP13 (see Fig. 8) to the trees where the lamps used to be. Then, fo punch
a card:

a) clear: run the motor to bring a new card under the punches

b) select: set an address by relays C and D

c) copy: momentarily operate timing relay 0.

Whether relay CP1 is now operated or not depends on the state of node X1,
which in turn depends on whether the selected relay is operated or not. If it is
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cry

,

7 I I ' IIII

'-1 I'I ll
I III

II I I 11

I 1 1 1 1 1

i I I I I Ij
I

11111j

IJ

JJ
COPY 4

COPY 3
COPY 2

COPY I

13 COPIES

A 4 CELL ,13 BIT MEMORY CIRCUIT

Fig. 12 Card reader and card punch connected to memory.
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operated (if a 1 is stored), the node X1 will be connected through the tree and the
iselected relay's make contact to the minus terminal. Since 0 is closed, CPi

will then operate. If, however, the selected relay is released (a 0 is stored),
the X1 node is not connected to the minus terminal, and CP

1
cannot be operated.

Similarly, CP2 through CP13 are set to the correct values.

Before leaving this topic, let us for future reference list the control signals
which we have used but for which no sources have been indicated. They are: pulses
to start the reader and punch motors, pulses to set the C and D relays for the
memory-cell selector tree, and pulses to operate the I and 0 timing relays in the
register selector.

6. THE ACCUMULATOR

The part of a digital computer which is analogous to the desk calculator and
which is used for performing arithmetic is called the arithmetic accumulator. The
accumulator adds (or subtracts) one number to (from) another and "accumulates"
the sum (difference). For our purpose the accumulator is a unit which consists of
two registers (the A and B registers) for the temporary storage of the numbers to
be added and a third register (the S register) which holds the sum of the numbers.
The "sum" and "carry" circuits which perform the operation of addition and
determine the sign are also included.

Fig. 13 is a reproduction of Fig. 9 of Chapter 3, a group of sum and carry
circuits for a binary adder which adds three-digit binary numbers. A1, A2 and
A3 are the input switches and represent the three digits of one of the numbers, and
B.19 B7 and B are the three switches which represent the second binary numiders.*
With tRis metod of representing the digits, operation of switch Al affects all al
contacts, A2 controls all a2

contacts, B1 controls all b contacts, and so on.
Fig. 14 shows an addition example. The operation of the sum and carry circuits
were previously treated in the discussion of Fig. 9, Chapter 3, but we are
interested in the modification of this circuit to permit its use as an element suitable
for a computer accumulator. For this function, we cannot depend upon the manual
operation of switches. Relays are therefore required, and since we wish to add
numbers each composed of twelve digits (and sign), it becomes necessary to use
two sets of relays, each consisting of 12 individual relays, A1, A

2
, Al2 and

B1, B2' .. B12' and two special relays, As and Bs, which store the signs of the
irespective numbers but do not participate in the adder circuit itself (see Fig.

15(a)). For purposes of read-out of the sum of each pair of digits, we also re-
place the read-out lamps with 13 S register relays So, Si, S2... S12(S0 stores
possible "overflow") and a sign relay Ss.

We have changed the "weighted" labelling scheme A4, Az, A1 of Fig. 9, Ch. 3,
to A1, A2, A3, (A leastleast significant) to make the transition to the thirteen bit
adder smoother. (In the weighted scheme, the most significant digit would have
been A8192 or A 13.)

2

`,0
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Majority Circuits

CARRY FOR DIGIT 2

CARRY FOR DIGIT 3

CARRY FOR NEXT DIGIT
(OVERFLOW)

CARRY DIGITS

REGISTER A
REGISTER B
REGISTER S

WM.

Odd - Parity Circuits

SUM DIG IT 3 (LEAST SIGNIFIC a T)

b2

SUM DIGIT 2

X

SUM DIGI T I
(MOST SIGNIFICANT)

Fig. 13 A three-digit binary adder.

CO Cl C

A
1

AZ A31
B3B1 Bz

Si SL S3

OVERFLOW DIGIT

1 1 1 CARRY DIGITS

1 0 1 FIRST NUMBER
0 1 1 SECOND NUMBER
0 0 SUM

Fig. 14 Organization for a computer adder
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CARRY DIGIT

A REGISTER

B REGISTER

S REGISTER Y

Cl C2 C3 C4 C5 C6 C7

A8

CO
A1

A2 .A3 I A
4 A5 A6 A7

B

Bg1

B2 133 B4 B5 B6 B7 B8

S so S S-2 I S3
[ S44 S- S6 S7

n over
relay
sign

flow
digit

digit relays

C8 C9 C10 C11

A9 FATOTAlliAl2

B I B 113 B9 L 11 12

59 S9 11 S12

Fig. 15(a) Registers for a 12-bits-plus-sign adder.

(There are also twelve carry relays Co
a.

, C , C11. ) Fig. 15(b) shows the
labelliaLcorrespondence between cards, dells an accumulator registers.

In addition to the register relays, we need some auxiliary control relays to
move numbers into and out of the registers, as well as to clear them. As an
example of the accumulator circuitry figure 16(a) shows the second stage of the
accumulator, that is, the stage for calculating the second digit S2 as the sum of
A2, B2 and C2. It is similar to all the other eleven stages except for stage
twelve which is simpler, having no carry into it. Fig. 15(b) shows that it
corresponds to the third copy of the memory circuit. In comparing this circuit to
the 2nd stage of the accumulator in Fig. 13 we note that relays A2, B2 replace
switches A79 B land relay S replaces light L2; also contacts of control
relays for blearing (CLA, Ctal3, CLS), and connection relays (MA, MB, SM,
SA) have been added.

Let us see how we use this accumulator to add numbers. Assume that the
first number is stored in memory location 01 and the second in memory location
10.

The sequence of action is remarkably similar to the two step select-copy
process for reading or punching from a memory location. Since more than
one number is involved, the switching required causes a small amount of
additional complexity.
1) clear the A, B and S registers (O's are stored) prior to receiving the
new information.
2) select the proper memory cell (first 01, then 10) in the memory selection
tree (Fig. 12).
3) connect and set registers to the same value as the memory cells, digit by
digit, thus copying the numbers from memory into the registers (01 in A,
10 in 13).
4) add the numbers just loaded in the A and B registers.

C
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y2

6-1

THIRD COPY
OF 4 CELL

I BIT
MEMORY

CONTACTS TO COPY §2 -
S2 IN MEMORY IMMO

xs2
MM

xsm

CARRY DIGIT

Pi

MO F

A2 DIGIT OF A REGISTER

cla
x

-1
B DIGIT OF B REGISTER

SO

s2

c.Qb

S DIGIT OF S REGISTER

b2

DIGIT 2 OF SUM

Fig. 16(a) A, B, and S registers, and Communication with
Memory.

CLA - Clear A
CLB - Clear B
CLS - Clear S

MA - Memory to A copy
MB - Memory to B copy
SM - S to Memory copy
SA - S to A copy
PL - Plus
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In detail, the above sequence of action in the second stage takes place as
follows:
1) clear: (Fig. 16(b)) momentarily operate relays CLA ("clear A"), CLB
("clear B") and CLS ( "clear S"). These three shunt contacts cause the A, B
and S relays to be connecteld to the minus terminal, thereby setting them to 0.
(completed paths are shown heavy)

CI

y2

A2 DIGIT OF A REGISTER

ma 1 cta

2ND COPY
OF 4 CELL,

1BIT
MEMORY

sa

s2

mb

CONTACTS TO COPY §
S2 IN MEMORY

CARRY DIGIT

2

Pi a2 b2 c2
x

B2 DIGIT OF B REGISTER

tti cibx
b2

S DIGIT OF S REGISTER

cis

a2

b2

DIGIT 2

o-

A, B, and S registers, and Communication with Memory
CLA - Clear A
CLB - Clear B
CLS - Clear S
MA Memory to A copy
MB - Memory to B copy
SM - S to Memory copy
SA - S to A copy
PL Plus

Fig. 16(b) Clear Registers.
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2) select: [Fig. 16(c)] in the selection tree of Fig. 12, release relay C,
and operate relay D, to connect the root of the tree (node X2) to cell 01
(Qs, Q1, ... Q12, where Qs contains the sign bit, and Q12 the least significant
digit).
3) copy: [ Fig. 16(c)] momentarily operate relay MA ("memory to A") in
Fig. 15. The make side of relay A2 is now connected directly to Xz and hence
to the second digit relay of cell 01 (on circuit 2). If relay Q2 were in an
operated state, its make side would be at minus, as would be, therefore, node
X2 and the make side of relay

.
A2, thus causing A2 to be operated; if, however,

Q2 were released, its make side would be at plus, as would be X2 and AZ's
make side, thus causing A9 to remain released. Hence the two relays become
identical in state, and the digit is copied. (a 1-bit in this example)

SET C= 0 D=I
2 ND COPY

Y2 OF 4 CELL,
I BI T

MEMORY

CONTACTS TO COPY § -
S2 IN MEMORY

xs2

xsm

CARRY DIGIT

A2 DIGIT OF A REGISTER

1
2

Ima

sa

mb
x

-0
B2 DIGIT OF B REGISTER

1 I db

Pi a2 b 2
c2

"; x

b2

S DIGIT OF S REGISTER

I cis

b2

DIGIT 2

A, B, and S registers, and Communication with Memory
CLA - Clear A
CLB Clear B
CLS - Clear S
MA Memory to A copy
MB - Memory to B copy
SM - S to Memory copy
SA - S to A copy
PL Plus

Fig. 16(c) Select and Copy cell 01 into A (Assume A2 = 1).
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4) select: [Fig. 16(d)] operate C and release D to connect the second digit
relay in cell 10 to X2.
5) copy: [Fig. 16(d)] operate MB ("memory to B") to set the R2 and the B2
relay to the same state, thus copying the digit. (Note that A2 remains set)

Y2

SET C=0 D=1

2ND COPY
OF 4 CELL,

I BIT
MEMORY

CONTACTS TO COPY §2
S2 IN MEMORY 2

XSm

CARRY DIGIT

ma

mb

a

/6 /

A2 DIGI T .OF A REGISTER

2 2

B2 DIGIT OF B REGISTER

1 I cib

b

cla

S DIGIT OF S REGISTER

A, B, and S registers,
CLA
CLB
CLS
MA
MB
SM
SA
PL

and Communication with Memory
Clear A
Clear B
Clear S

- Memory to A copy
- Memory to B copy

S to Memory copy
S to A copy
Plus into

Fig. 16(d) Select and Copy cell 10 into B (assume B2 = 1).
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6) add: [Fig. 16(e)] now the A2 and B relays have been set, and similarly
the entire A and B registers have been loaded; we can now add them using the
sum and carry circuits we discussed before. Momentarily operate relay PL
("Plus") which initiates the action of the adder, and causes the results to be
stored on the S relays. (Note that the addition at stage 2 involves the carry
C2 previously calculated in the S3 stage not shown explicitly in the diagram.
Similarly, the carry C1, is calculated for the next stage.)

In order to add a third number to the previous two, the contents of the S
register must be transferred to A or B prior to the addition. Let's load it into
A. The other steps are identical to the ones above.

1) clear: momentarily operate relays CLA and CLB, This makes certain
that registers A and B both have zero in them. (Register S, however, still
has the sum in it. )
2) select: in the memory access tree, Fig. 12, operate relay C and relay
D. This selects memory cell 11 containing the third number.
3) copy: momentarily operate relays MB and SA ("S to A"). This makes
the states of the B relays correspond to the bits stored in the memory cell
11, thus copying the number. It also makes the states of the A relays the
same as those of the S relays.
4) clear: momentarily operate relay CLS. This clears register S of the
number which has been transferred to A in step (c).
5) add: momentarily operate relay PL. This puts the sum in register S.

Suppose that we wanted to copy this sum in memory cell 00. Two steps are
required:

1) select: in the memory acce-- s tree release both relays C and D to select
memory cell 00.
2) copy: [Fig. 16(f)] momentarily operate relay SM ("S to memory"). This
makes the state of memory cell 00 the same as the state of register S.

It is possible to build a multiplier circuit into the accumulator; in fact, most
large digital computers have such a circuit. Multiplication can be accomplished
by a combination of shifting and adding, as we saw in Section 5 of Chapter 4.
While we shall incorporate shift register hardware in our computer, we shall do
multiplication by "programming" repeated addition, rather than by including extra
multiplier logic in the computer. Without going into detail, let us then assume
that the accumulator has shift register (and subtractor) circuits in addition to the
above adder circuits.
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X
b2

DIGIT 2

O- +

cis
K

and S registers, and Communication with Memory

CLA - Clear A
CLB - Clear B
CLS - Clear S
MA - Memory to A copy
MB - Memory to B copy
SM - S to Memory copy
SA - S to A copy
PL Plus

Fig. 5.16(e) Add A and B in S (Assume A2 = 1, B2= 1, C2 = 1)
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SET CO,= D=0

2ND COPY
OF 4 CELL
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MEMORY

MG

A DIGtT OF A REGISTER
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B2 DIGIT OF B REGISTER

mb I eh
CONTACTS TO COPY
S2 IN MEMORY 2 b2

CARRY DIGIT
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Pa 62 b2 c2
o x x x x

S, DIGIT OF S REGISTER

cis

a2
X
b2

DIGIT 2

and S registers, and Communications with Memory
CLA - Clear A
CLB - Clear B
CLS - Clear S
MA - Memory to A copy
MB Memory to B copy
SM - S to Memory copy
SA - S to A copy
PL Plus

Fig. 5. 16(f) Select and Copy S into cell 00.
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Let us now add the accumulator to our block diagram. The result is shown
in Fig. 17. All the relay contacts represented in Fig. 16, except those of MB,
MA and SM are included in the block labeled "Accumulator". Contacts of MB,
MA and SM are part of the "Register Selector" block, since they are used in moving
numbers between the accumulator and the memory. *

INPUT

ACCUMULATOR

--el OUTPUT

REGISTER
SELECTOR

MEMORY
CELL

SELEC TOR
MEMORY

Fig. 17 - Block diagram of connected input,
output, accumulator, and memory.

7. INSTRUCTIONS

At this point let us pause for breath, stand back and see how far we have
progressed with out plans for a computer. We have gained a good idea of how
numbers can be put into the machine, how we do arithmetic with them and how we
read them out.

We must now decide how instructions are to be presented to the computer.
One method would require taking the English text used as instructions for Steadfast
and converting this to Morse Code. This code could certainly be put into a machine
by having dot stored, for instance, as 0, and dash as 1. This, however, would be
poor practice. Not only is it needlessly bulky (it takes 150 dots and dashes for
instruction 3 in Steadfast's list), but there are thousands** (if not millions) of ways
of giving instructions in English. Steadfast can understand and obey any one of
these variations, but to have the computer do so is not practical. We require a
unique way of expressing a given instruction.

To accomplish this, we prepare a list of useful and required instruLLions
which we use consistently to command the machine, and we assign a unique binary
number to each of these instructions. This method provides a useful abbreviation
of some fairly complex commands.

*Note once again the role of contacts MA, MB, SA, SM, and PL in the accumulator
circuit; they are selection contacts which do not store information but allow con-
nections between circuits to be made at designated times. They are similar to the
i and o contacts on 4-cell memory circuit and effectively address the appropriate
relay at the appropriate time. (Note that SA and S2 play a very different role with
respect to relay A2: SA is an addressing contact whereas S2 is the information
storing contact).
*Here are 1024 ways. By making the 10 choices in all possible ways, you get 210
different sentences. !Clear % lyourl /desk /calculator) putand (- the

Reset/ % the ' %manual/ computer enter
/material cost of this /item /

/ it.
cost of material/ %for/ the present/ %part / k
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Referring to the block diagram of Fig. 17 and recalling our discussion of
the circuits, the following list of operations has been encountered so far:

a) Read: copy the contents of a punched card into a memory cell.
b) Punch: copy a card from a memory cell.
r) Clear and Add: Clear the accumulator (by reading 0-bits into the A,
B, and S registers). Then copy a number from its address in the memory
into the A register in the accumulator. Finally transfer the contents of the
A register via the "add" circuits into register S so as to copy the number
from memory into the accumulator (add A and 0 into S).
d) Add: Without clearing the Accumulator, add a number to it from a
memory cell.
e) Subtract: Subtract from the Accumulator a number taken from a memory
cell.
f) Store: Put a copy of the Accumulator into a memory cell.
g) Shift: Shift a number in the Accumulator left Y places (or right Z places),
putting 0's in the vacated digit positions.

Note that all but the last instruction refer to specific memory cells. We shall
therefore assign binary numbers to machine instructions which consist of two
parts. One part of the binary instruction, called the operation code ("read",
"punch ", or "clear and add", etc. ), indicates the operation to be performed.
The second part indicates the address of the cell in the memory to which we refer.
The operation f shifting requires no reference to a memory location, so that we
can use the address portion of the instruction to indicate, instead, the number of
places the digits sbovid be shifted and the direction in which the shift should take
place. If we have 16 or fewer operations, four binary digits (bits) are enough to
specify uniquely a particular operation: 0000 for the first operation (0 on our list),
0001 for the second operation, etc.

If we represent our instructions as 13-bit numbers, 9 bits will be available for
for addressing, so we could have 512 memory cells, numbered 000000000 to
1111 11111 consecutively. These sixteen operations and 512 memory cells are
more than adequate for our purpose. Thus 0010000000101,

=2 =5,
0010 00000101

operation
code

address

a 1 3-bit number, might symbolize the machine instr-rction "without clearing the
accumulator, add the contents of memory cell #5 to it".

Note that we have not included the instruction which adds two numbers from
memory: our computer instructions will be standardized to involve at most
one number, as you will see shortly. Thus to add two numbers, you "clear
and add" the first, then "add" the second to it.
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The representation of instructions with unique binary numbers offers an
extremely important additional advantage. Represented as binary numbers,
instructions can be stored in the machine's memory and, from this memory,
these instructions may be withdrawn in a sequential fashion to guide the operation
of the entire computer. All that is needed is to store the instructions in a block
of consecutively numbered memory cells and to design the machine to read its
instructions one after another, and to ex cute the commands in this sequence.
In other words, the computer is designed to store not only the data which are
involved in a computation, but also the sequence of instructions necessary to
carry out the computation. Note that there is no a priori way of distinguishing
ordinary 13-bit numbers used as data, from 13-bit numbers to be used by the
machine as its instructions. In section 9 we see how this difficulty is resolved.

8. DECIMAL VERSUS BINARY CIRCUITS

Before we continue to discuss the problem of executing instructions, we
must make a simplifying assumption about the fundamental nature of our computer.
Until now our logic and our circuits have been binary-valued. It is possible, how-
ever, to build a circuit components which can be in one of ten states, say, rather
than in one of two. As a matter of fact, the world's first electronic computer, the
ENIAC built in 1944, was a decimal machine in that its data, instructions and
circuits were all founded on base 10 rather than on base 2.

While we won't discuss such circuits here*, we note that their operation
is entirely similar to that of binary circuits - compare, for instance, the action
of a binary adder and a decimal adder. The individual circuit which represents a
single decimal digit, since it must be 10-valued, is clearly more complex than the
binary relay (it may be a group of relays or a special device such as a 10-position
rotary switch. Now notice that the decimal representation of a given number is much
shorter than the binary one: it takes only three decimal digits to express most 10-
bit binary numbers (1111100111 being the largest such binary number). The number
of digit position required to represent a given numeral in decimal memory cells or
registers is thus considerably smaller than in the binary machine, at the cost of in-
creased complexity for each digit position. Nonetheless, it is easier to discuss
numbers in a familiar number s stem usin only 3 di its than in an unfamiliar one
usin: 10 or 13 di: its in base 2, and we therefore avail ourselves of this notational
convenience hereafter. If at any time you wonder what is really happening in the
decimal computer, just remember the binary machine we set out to construct, and
-.'eason by analogy - the o eratin rinci les are identical.

Thus we turn to our decimal computer, whose cells for convenience have
been picked to be three-digits-plus-sign long. An instruction, then, consists of
a sign plus a 1-digit operation-code part, and a 2-digit address part:

the number -205:
sign ignored
in instruction

-205
....laoperation

code address

*See the iscussion of ection 10.
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might symbolize the "add from cell #5" instruction of the previous section. Since
there are two address digits in an instruction, we can specify one of 100 addresses
labelled 00 through 99, each holding, of course, 3 decimal digits plus sign, data
or instruction.

9. INSTRUCTION CYCLE AND CONTROL UNIT

Now that we have a way of encoding and storing (decimal) instructions in
memory, let us devise a systematic method for having our computer carry them
out one after another (execute them). Remembering the discussion of Section 2,
we can see that the very orderly cycle of the execution of Steadfast's instructions,
diagrammed in Figs. 4 and 18(a), can be redrawn in computer terminology as in
Fig. 18(b). For instance, in Step II, if we assume for the moment that the

START

MOVE FINGER
AHEAD ONE
INSTRUCTION

READ (AND
REMEMBER)
INSTRUCTION
WHICH FINGER
INDICATED

(CARRY OUT ST_
ART

INSTRUCTION
JUST READ
IN STEP I

YES YES
STOP STOP
(a) (b)

Fig. 18 Flow chart for instruction cycle of
(a) Steadfast and (b) computer

instructions are numbered, then clearly a counter can replace Steadfast's finger
as a way of keeping our place in the list of instructions. In Step IV Steadfast
checks to see that in executing the current instruction he was (or was not yet)
finished (i.e., was it instruction 8, and, if so, did he jump back to 3, or did he
decide to halt? ) If he decides to halt in Step IV, he will finish the job by putting
pencil and paper away, clearing the calculator for the next person's use, and
similar housekeeping chores. Our computer must have a definite piece of hard-
ware for just this function, called the "run-stop switch". It is set to "stop" by
a special "test and halt" machine instruction similar to Steadfast's #8.

Let us now look at the "instruction cycle" of 18(b) in some detail. First of
all, if we are to make the cycling automatic, we have to have an "instruction cycle"
logic circuit which will go through steps I, II, III and IV of the cycle in repetitious
clocklike fashion. In addition to this circuit, we need the "instruction decoding"
logic circuit mentioned in Section 7, Chapter 4 (the Morse Coder) whose function

A-5. 32
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is the decoding and actual execution of the instruction itself. Be sure to distinguish
between stepping through the entire instruction cycle (steps I through IV), and

executing" the current instruction only, as symbolized in Fig. 19. In other words,

NEXT I
INSTRUCTION

INCREMENT
INSTRUCTION

COUNTER

3X
"I DECODE AND/ EXECUTE
3 INSTRUCTION

(SELECt, COPY, ADD,ETC,
USING APPROPRIATE RELAYS)

3C7
TEST FOR

COMPLETION

Fig. 19 Instruction Decoding Sequence within the Instruction
Cycle Sequence: "the play within a play"

as we saw in tracing Steadfast's actions, there is a lot more to "executing" a list
of instructions than just doing them (Step III) - we also need to do the "bookkeeping"
(Steps I, II and IV) before and after each instruction, and to set up for the next
instruction (if any). Thus we have two new circuits - the instruction cycler, and
the instruction decoder, the latter operating under control of the former at the
appropriate time.

Since both of these circuits "control" (one in the larger sense of controlling
the entire cycle, and one in the smaller sense of controlling the execution of the
instruction itself), it is customary to build these two circuits into the same physical
unit, called the CONTROL UNIT.

In a sense you might say that the Control Unit is the heart of our computer
(or of any other) since it sets the stage for the execution of the instructions and
supervises this execution at the appointed time. Figure 20 shows the completed
computer. The two selectors and devices connected to them are as in Fig. 17. We
have added the Control Unit in a central position to indicate its importance. Also,
there are two new registers, the Instruction Counter (IC) and Instruction Register
(IR) to help with controlling the instruction cycle. The Instruction Counter
"remembers which instruction comes next" (corresponding to Steadfast's index
finger). It is essentially a copy of the circuit shown in Fig. 12 in Chapter 4.
This circuit can initially be set to a given instruction number and then used as a
counter to keep track of the consecutive instructions executed. The Instruction
Register is simply a set of relays whose job is to "read and remember this
instruction" up to the time (and while) it is being executed, in steps I, II and III.
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Just as we saw in the previous section that an instruction has two parts, the
operation code and the address portion, so we now think of this register as having
two parts, a one-digit operation code part and a two-digit address part.

The Instruction Counter holds the two-digit address of the instruction.
All thjis is symbolized in Fig. 20, which shows the instruction from address 04
in the Instruction Register. Notice that 201 is regarded by Control as being com-
posed of an operation code, 2, and an address (of data), 01 in this case. Be sure
to distinguish between the address of an instruction (i. e., its location within the
the block of instructions in memory, cell 04 in this case) "pointed out" by the
Instruction Counter, and the address portion of the instruction (i.e., where in
memory the instruction's data are to be found or to be stored, (cell 01 in this case)
pointed out by the last two digits of the Instruction Register.

In order to understand how the two Control circuits (Instruction Cycle and
Instruction Decoding) function together to execute instructions, it is useful to see
in some detail what has to happen. We cannot show you how to "build" these two
circuits as we did for our memory cell selector and memory, or our accumulator,
since they have far too many components. Their operating principles, however,
are remarkably similar to that of the Morse Code Transmitter of section 7,
Chapter 4, You may remember that the simultaneous setting of three switches
(see Fig. 14, Chapter 4), produced a timed sequence of actions (lighting of dot or
dash lamps in this case), one particular sequence for each individual setting of
the three switches. Both Control circuits behave in a way similar to the Morse
Code Transmitter in that they too cause a timed sequence of actions (timed, as
before, by a sequence of "clock pulses" from a counter). In the case of the
instruction cycle circuit, this is the timed sequence of steps, I through IV. In
contrast, the instruction decoding circuit actually takes charge of step III and
causes, in general, a rather long sequence of small operations (clearing registers,
copying numbers, adding A and B registers in the accumulator, etc. ) necessary
to execute the individual instruction in step III. (See again Fig. 19.) Thus you
see that the "timed sequence of actions" may include something much more compli-
cated than the momentary lighting of a bulb.

The best way in which to make these essentially simple (though seemingly
complicated) instruction cycle - and decoding-sequences clear, is to take "snap-
shots" of our machine during its operation. We did this in wcrds and pictures
when we discussed the detailed operation of the accumulator - and we do it again
for the machine as a whole.

Along with each picture there is a description of the action, as well as an
explanation of the circuit details in an idented paragraph. You may skip such
details or come back to them after things have become clearer. In fact, you will
probably want to reread all of this current section in the light of the picture
sequence.

Let us start with Fig. 22(a), an annotated version of Fig. 2C Here we show
the same number, +201, in location 04, but have stored several other numbers in
other locations.* Since the Instruction Counter is a circuit similar to that of

The problem of loading these nurhers (some of which gill be instructions, and
some of which will be data) in the machine is postponed until Section 10,
Chapter 6.
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Fig. 12, Chapter 4, we can set it to an initial value, 04 for instance, thereby
indicating to Control that 04 contains the first instruction to be "fetched", i. e.,
brought to (copied into) the Instruction Register prior to being decoded in Step
III. After the machine has finished "fetching" in Step I, we take our first snap-
shot. (Step I is indicated in heavy ink above the words "Instruction Cycle", also
heavy. ) In this and the following figures, the computer is diagrammed at the end
of the indicated step. Please follow Fig. 18(b) simultaneously. Also, paths for
information (solid lines) and control (dashed lines) used in each step are shown
heavy, as are the affected circuits and registers and their contents. The
settings of the selectors as they are set by the Control Unit are shown alongside
the corresponding dashed line. (The selectors are only networks of contacts of
Control Unit relays. )

Thus in Step I the memory cell selector was set to the address of the
instruction to be fetched (04), and the register selector to the Instruction Register
(IR) which received the contents 201. The direction of the flow is indicated by the
arrows.

In detail: Assume that CONTROL has a built-in counter-driven "clock
pu ser" as did the Morse Coder (Lab. Experiment #5) to regulate and time
all events in lockstep with these pulses. For the duration of clock-pulses
1 and 2, the computer is in step I. a) select: during both these counts
the tree contacts in the memory cell selector are set to address 04, as
dictated by the setting of "04" on the Instruction Counter relays. b) clear:
also at clock-pulse 1, a pulse operates a "clear" relay, whose make con-
tact shunts the Instruction Register. c) copy: at count 2 a pulse to a
special MIR (Memory to Instruction Register relay in the Control closes
the MIR contact in the register selector circuit, thus causing the instruction
register to be connected, relay for relay, to the selected memory cell.
(What is shown as a single connecting line is in actuality a 3-line bundle for
the decimal case, or a 12-line bundle for the binary case. ) Thus, in a
manner familiar to us from our study of the accumulator, the result of
pulses 1 and 2 and the action of the Instruction Cycle Circuit is that a copy
of the contents of 04 is placed in the Instruction Register. Please note that
the direction of the information flow indicated by arrows is an artifice -
as you know, digits don't actually travel from one place to another. Again,
the states of the relays on the "receiving end" of the arrow are set to the
same states as the corresponding relays on the "sending end". The matching
of states takes this "direction" since the "receiving" relays are always re-
leased (cleared) first.

In step II of Fig. 18(b) it is specified that 1 be added to the Instruction
Counter (IC) - i.e. , that it be "incremented" to the "next" instruction's address.
Fig. 22(b) shows that the contents of IC have been incremented from 04 to 05.

In detail: Since the IC is indeed a counter, it is simple for Control to in-
crement it during clock pulse 3, in the manner described in Section 6,
Chapter 4..

We have now arrived at the crucial step of the instruction cycle - the
execution of the current instruction as it is contained in the Instruction Register.
In a sense, the instruction cycle circuit now passes responsibility to the instruc-
tion decoding circuit, so that it may execute its timed sequence of actions. Again,
just as the Morse Coder's action sequence depended upon the setting of 3 switches,
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the instruction-decoding-execution depends on the setting of the IR relays. In
particular, let us assume that a first digit of "2" is interpreted (by us, and by
the computer) as the operation code (op code) for "add to the accumulato7The
contents of the cell specified in the last 2 digits of the instruction". The setting
of 2 on the op code relays causes the register selector to be set to Accumulator
(AC), while the setting of 01 on the address relays of the Instruction Register
causes the memory cell selector to be set to 01. Thus a path is established from
01 to the accumulator, with the result that 000 (old AC contents) and 003 (old 01's
contents) are added to accumulate the sum, 003, in the AC. Since numbers are
only copied, it is clear that 01's contents are not changed by this operation.

In detail: During step III, the next group of clockpulses, 4 through 7, causes
appropriate auxiliary relays to operate in the card reader, punch, accumula-
tor, or register selector, according to the setting of the op code relays. In
this case, a path is selected from memory to the accumulator and addition
is performed. a) clear: according to the discussion of Section 6 in the
paragraph starting with "In order to add a third number to the sum accumula-
ted in S, ..." (page A-5.21), we see that on pulse 4, the CLA and CLB relays
are operated, by the Instruction Decoding circuit. b) select: Also on pulse
4, the memory cell selector is set according to the address relays of the
IR, 01 in this case*. c) copy: on pulse 5 relays MB (Memory to Register
B of the accumulator) and SA are operated. Note that the setting of the
register selector is not actually the first action in Step III, though we
described it as such above. d) clear: on pulse 6 CLS is operated.
e) add: pulse 7 concludes the instruction execution by causing the operation
Jt relTy PL to produce the sum in the S register or accumulator.

Note that, strictly speaking, the clock pulses only serve to time events,
not really to cause them. The settings of the op code relays determine which
of the many auxiliary relays are to be operated and when.

Let us now look at the operation decoding problem in more detail.
The specifications for the Morse Coder can be interpreted as a list of
pseudo "op codes" (letters A through H, or alternatively the equivalent
XYZ switch settings GOO through 111). Depending on these settings,
the circuit can cause operation (or release) of two lamps (we could equally
well use relays) at clockpulse-specified times. You can see, then, that we
could construct similar specifications for a list of computer op codes, 0
through 9, but with a much larger number of alternative actions (i.e.,
operation of more than 2 relays). The row for op code 2 of such a table
of specifications might look like this:

*You may wonder how the instruction counter relays (in step II) and the address
relays of the instruction register (in step III) can both determine the settings of
the contacts of the memory cell selector tree. In reality, there is an intermediate
"current address selector" set of relays (not shown) whose contacts actually form
the memory cell selector tree. The setting of these current address relays is
controlled in the familiar way by either the IC or IR address relays, which are
therefore in direct control of the memory cell selector tree.
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Op code II. Binary Input Code III. Relay Actipn (Output)

2

Re ay 0
0

Relay
0

Relay 2
1

Relay 3
0

clock
4

CLA, CLB
Address

01

pu se
5

MB, SA

number
6

CLS
7

PL

Clock pulses (start with #4) 0 1 0 1 0 1 0 1

off on

Note: 1) instead of counting time intervals as we did in the Morse Coder,
we equivalently count clock pulses - there is an "off" between every two
"on"'s and vice versa; 2) "address 01" in the clock pulse 4 column stands
for "operate relay in the current address selector (not shown) to set up
address 01 in the contacts of the memory cell selector tree. ")

The other 9 rows in the table of specifications would look similar.
How would the specification table for the instruction cycle circuit look?
Very similar - it would have 4 rows, one for each step, and an analogous
selection of relays to be operated at specified times. In row III, it would
show no action at clock pulses 4 through 7 since the instruction decoding
circuit would be active then.

In step IV since the op code of step III was not "halt" (defined as 9), the
instruction cycle circuit and the clock pulser were reset to start a new cycle with
step I. If the op code had been 9, then the "run-stop" switch would have been set
to "stop". In step IV, the machine would have done such housekeeping as turning
off the clock pulser and clearing the accumulator and instruction register; the
computer would be in a "wait" state, waiting for someone to, start it up again by
pushing the "run-stop" switch to "run". Since we have not included a halt in this
sample program, we hereafter omit the rather obvious step IV snapshot and go
directly to Step I of the next cycle.

In Step I, the contents of cell 05, namely +602, were fetched as the current
instruction (the sign, as usual, is ignored).

In Step II, the counter was incremented to 06, the address of the next
instruction.

Once again it is time to execute the current instruction. By definition, it
is whatever the contents of the Instruction Register specify. As shown in Fig. 22(g),
602 was decoded as "Store the contents of the accumulator in the memory cell
specified in the address portion of the Instruction". Thus we see that the sum,
+003, previously accumulated during the execution of instruction 201, is stored
in cell 02.

In detail: a) select: according to the description of storing from the
accumulator i rTmotion 6, we see that on clock pulse 4, the memory selector
tree is set according to the address relays to 02; b) copy: on clock pulse
5, contact SM is closed in the register selector, making the state of cell
02 the same as that of the S register in the accumulator - i. e., the number
is copied. (We omit step IV. )

A-5. 42
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In step I the current instruction 502 was fetched from cell 06.

In step II the counter was incremented to 07, the address of the next
instruction.

In step III, 502 was decoded as "punch the contents of the memory cell
specified in the address portion of the instruction". Thus +003, the contents of
02, was punched out

In detail: a) clear: according to the discussion of "Input and Output
connected to Memory", Section 5, we see that on clock pulse 4, relays
which run the motor are operated. b) select: at the same time, the
memory selector tree relays are set to copy! on pulse 5,
operation of relay (output) closes contact 0 in the register selector to
connect memory to the punches (CP1 throug1' CP13 for our true binary
machine). Step IV is omitted.

In step I, 804 was fetched from 07 as the current instruction.

In step II, the counter was incremented to the address of the next instruction,
08.

What is the purpose of instruction 804? Until now we have added a number
(+003) to the accumulator (instruction 201), stored the new sum (instruction 602),
and punched it out (502). Now suppose that we wished to continue this pattern of
instructions indefinitely, generating thereby a sequence of cards each with a
number 003 greater than the previous one. What we need is to be able to "jump
back" to the instruction in memory location 04. But this is equivalent to saying
"we need to be in step I of the instruction cycle, with 04 in the Instruction Counter,
rather than 08." (Then, in step III, by definition, 201 will be executed as it was in
the first snapshot, since it was fetched in step I.) Instruction 804 does precisely
this - you'll notice that it caused 04 to appear in the Instruction Counter. 804
was therefore decoded as "take the address specified by the address portion of the
Instruction Register and put that address (04 in this case) in the Instruction Counter".

In detail: a) clear: at clock pulse 4, a special relay CLIC (Clear Instruction
Counter, now shown) shorts the Instruction Counter relays to minus, thereby
releasing them. b) copy: on pulse 5 the address relays are connected
through contacts on another special relay REC (Register to Counter, also
not shown) to the counter relays, thereby transferring the address to the
counter.*

At the end of step IV of the current cycle, we go to a new cycle starting
with instruction 201. Would a step I snapshot look any different from Fig. 22(a)?
Only in this detail: +003 in the accumulator and in memory cell 02. In the next
four cycles, the accumulator's contents would be increased to +006, etc.

Note: In the final analysis, only usage determines the distinction between
data (+003 in call 01), instructions (+201 through +804 in cells 04 through
07 respectively), temporary results (000, 003, etc., in cell 02) and unused
numbers (+001 in 00, -619 in 03, etc. ). If initially, after pushing the run -

*T e contents o cell 99 are a so modi led in accordance with t e escription of
8 instructions of Section 3, Chapter 6.

A-5. 48
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stop switch to "run'; we had started the instruction counter in step I at
00 instead of at 04, the machine would have executed 001, "read a card
into cell OP, followed by 003, "read a card into cell 03", etc. Only the
programmer knows for sure what the meaning of each individual cell in
memory is, and it is his responsibility to put the right things in the right
places, as well as to start the machine at the right place.

10. GENERALIZATIONS AND EXTENSIONS

Since we have now given a basic idea of how a computer is put together and
what types of instructions it handles, it is fair to ask what relationship our machine
bears to the real world. As we said in Section 1, our original machine handles
binary numbers only, but could be made to handle realistic alphabets of decimals
or alphabetic characters. Let us see for a moment how we could use a binary
machine to represent (i. e., to encode) such characters.

Binary encoding permits computers, in effect, to process and store letters,
decimal numbers, logical truth or falsity, the outcome of legislative votes, etc. 2
by making use of the contacts in binary logic circuits. Of course, one must be
careful not to apply these circuits indiscriminately, i.e., we should not want to
add one "letter" to another, or to a number for that matter. Nevertheless, this
idea of representation or encoding is basic to the use of computers for a variety
of tasks.

The fundamental point is that modern computers consist of two-state
elements; computers do not contain numbers or letters or any other quantity, but
the binary elements can represent, or symbolize, any one of these or many other
things at the choice of the user depending on his objectives.

Thus the process of encoding or representation involves establishing a
correspondence between two sets of items. As an example, Table I gives a
correspondence between the decimal numbers and their binary equivalents for the
first sixteen decimal numerals. If we take each "0" and "1" to represent the
condition, or state, of a switch contact, then Table I is a coding for the numerals
(up to 16) suited for use in a computer with binary circuits.

Table I

Decimal Numeral Binary Numeral
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110

0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

A -5. 54
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While we represent a closed contact by "1" and an open contact by "0" so
that we can talk conveniently about the various things that contacts can represent,
you should note that not only this correspondence but Table I as well is entirely
arbitrary. Table I is a correspondence that conforms to the binary number system.
However, we could choose to represent the decimal numerals by iny other set of
symbols. For example, another coding that is sometimes usefu' in computers
involves replacing each individual digit of a decimal numeral by its binary equiva-
lent. Table II shows several examples.

Table II
Binary-Coded Decimal

Decimal Numeral (BCD) Numeral
128 0001 0010 1000

20 0010 0000
6 0110

Binary Numeral
10000000

10100
0110

If we wanted to use BCD coding for our 3-decimal-digit-plus-sign computer, we
would need 1 bit for the sign and three times 4 bits per digit (13 bits all together).
Would these 13 bits function in the same way as the 13 bits of our original binary
computer? Indeed not, as the example of decimal 128 in Table II shows. Also,
the 13-bit binary adder of Section 6 works only for straight 13-bit binary and not
for 13-bit BCD. To construct logic circuits for a BCD machine would be a com-
plex but entirely possible task: each group of 4 bits, representing an individual
digit, would have to be treated as a unit, and the BCD adder would not have the
easy similarity of stages of the binary adder. An alternative, which is sometimes
used in modern-day computers, is to store decimal digits in BCD, and to use
logic circuits to convert the BCD representation of the decimal number to a
straight binary representation, prior to arithmetic operations, reconverting the
result back to BCD to store it. In fact, BCD-type coding is usually extended to
include both letters and decimal digits, as shown in Table III. Each letter,
numeral or symbol is represented by six bits, and the encoded set includes not
only the upper-case letters and numerals but some useful special symbols as well.
This correspondence was established by merely listing the numerals, 1,etters and
symbols in a convenient order and then numbering them consecutively with the
six-digit binary numbers. Thus, a multiple-digit decimal numeral, such as 796,
is written in 6-bit binary-coded decimal form as 000111 001001 000110.

Notice that n bits can represent 2n distinct objects labelled....000.....0-4+0-n
through 111. 1 To show this, consider an individual n-bit number to have

been composed by picking 0 or 1 for n consecutive digit positions. Thus there

were 2 choices for the first, 2 choices for the s e c o n d , . . . , and 2 choices for the
2. 2 2

n

.2n
nth digit position. * Hence there are ....................... distinct sequences of

choices. Try it out for n = 3, for instance. Table III holds 64 (or 26) characters
for 6-bit BCD numbers.

*As we did in the footnote on page A. 5. 22, we can symbolize these successive
choices by 0 0 0

( 1 1) °(1)°
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TAB LE III TAB LE IV
SIX -BIT BCD CODE SEVEN-BIT BCD CODE

0000000
1000001
1000010
0000011
1000100
0000101
0000110
1000111
1001000
0001001
0001010
1001011

@ 001100 @ 0001100
: mum t 1001101
> 001110 > 1001110
? 001111 ? 0001111
b 010000 t 1010000
A 010001 A 0010001
B 010010 B 0010010
C 010011 C 1010011
D 010100 D 0010100
E 010101 E 1010101
F 010110 F 1010110
G 010111 G 0010111
H 011000 H 0011000
I 011001 I 1011001
& 011010 & 1011010
. 011011 0011011

011100 1011100
011101 0011101

< 011110 < 0011110
\ 011111 \ 1011111
t 100000 p 1100000
J 100001 J 0100001
K 100010 K 0100010
L 100011 L 1100011
M 100100 M 0100100
N 100101 N 1100101
O 10011:: 0 1100110
P 100111 P 0100111
Q 101000 Q 0101000
R 101001 R 1101001
- 101010 .. 1101010

t 101100
$ 0101011

1101100
101011

) 101101 ) 0101101
; 101110 ; 0101110
' 101111 ' 1101111
+ 110000 + 0110000/ 110001 / 1110001
S 110010 S 1110010
T 110011 T 0110011
U 110100 U 1110100

110101 V 0110101
W 110110 W 0110110
X 110111 X 1110111
Y 111000 Y 1111000
Z 111001 Z 0111001
4- 111010 4- 0111010

111011
111100

1111011
0111100

- 111101 - 1111101
II 111110 II 1111110
I 111111 1 0111111

0 000000 0
1 000001 1
2 000010 2
3 000011 3
14 000100 14

5 000101 5
6 000110 6
7 000111 7
8 001000 8
9

#

001001
001010
001011

9
[
#
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One difficulty with codings such as that in Table III lies in the possibility
of making errors. With a long string of 0's and l's, it is all too easy for a
person to substitute a "1" for a "0" when copying. Relay and switch contacts,
too, can malfunction and be open when they are supposed to be closed or vice-
versa. One way of protecting against errors is to add to the binary string an
extra digit whose value, 0 or 1, is arranged so that the total number of "Ps"
in each 7-bit string is even; that is, 0, 2, 4, or 6. Table IV is the same as Table
III with the additional bit appearing at the left end of the string. Note that all the
seven-bit strings have an even number of ones. Should a string appear with an
odd number of l's during a computation, you can be sure that an error has
occurred in transcription of the initial coding.

This 7-bit representation is an example of an error-detecting code, and
such codes are often used where great amounts of data and symbols are to be
handled. Computers are one example, and error detection is vital for them since
their elements can fail, even though such failures are infrequent.

This particular error-detecting code always works when a single digit is
in error. It may not work if two or more digits are wrong. For example, a "1"
can be interchanged with a "0" in any of the 7-bit strings without violating the
"even number-of-ones conditions." However, single errors are the predominant
kind in many situations and so our single "parity-check" error-detection code, as
it is called, can be quite useful. Codes which can detect multiple errors and can
also be used to correct them have been devised for applications where higher
reliability is necessary. All such codes involve adding additional bits to the
binary words so that certain prescribed relations exist among the bits making up
the words.

Having seen how to store characters as bits, you may now understand how
the conventional punched card (usually referred to as an "IBM card") shown in
Fig. 23 is encoded in a binary machine. Each of the columns represents one digit
or character. A commonly-used code for representing characters and numbers
is indicated on the card. In this representation each column can have at most
three punches; and the correspondence is indicated by the pattern of punches
beneath the printed character at the top of the card. In effect, each character is
represented by a 12-digit binary number (if we equate a hole in the card to "1"
and no hole to "0") in which only 3 bits at most can be "one". This particular code
takes 12 bits rather than the 6 bits of Table I, because of this restriction. That is,
the 12-bit punched card code is not a minimum representation. A single character
therefore takes up an entire 13-bit word in this representation, and the machine
could have logic circuits to convert two consecutive words of 12-bit characters
into a single word with two 6-bit BCD codes. Note that the character appears on
the top row; it is produced by a special device, such as a "keypunch" or an
"interpreter", whose logic circuits can cause typewriter-like keys to print the
translated 12-bit code.

To sum up: we have seen how a binary computer, using only binary logic
elements, can represent and manipulate arbitrarily complex information if suitable
encoding, conversion and operation circuits exist. In what sense is our simple
binary machine (or its decimal equivalent) a general-purpose computer, as
mentioned in the introduction to this chapter? The answer is not immediately

A -5.57
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Fig. A-5. 23 Punched card

SPECIAL j
CHARACTERS

J

obvious, and its proof will have to be demonstrated by example in the following
chapters; however, it is, at least, simple. A binary (decimal) machine is general-
purpose if it can 1) input and output, 2) do simple arithmetic (addition and sub-
traction are enough, since multiplication and division can be done by repeated
addition and subtraction), 3) make simple two-way comparisons between (binary)
numbers and react by choosing one of two alternative "next instructions". This
last capability is added to our machine in the next chapter. It turns out that any
arbitrarily complex procedure can be assembled from such primitive operations
executed by binary (or decimal) logic circuits. The detailed specification of such
procedures is the task of the programmer; we see the fundamentals of his art in
the next chapter.
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PROBLEMS

5. 1 Write the decimal number 396 in binary-coded decimal form.

5. 2 Write the binary number 1011010 in a binary-coded decimal form.

5. 3 Decode the following message according to the correspondence of
Table III

100001 110100 100011 111000 000100 111011 000001 000111

000110 000110

5. 4 Which of the following coded symbols are in error according to the
error detection scheme of Table IV?

(a) 0000001
(b) 1000100

(d) 1001100
(e) 1111111

(c) 1101100 (f) 0111111

5. 5 Construct (draw) logic circuit which when properly connected to a card
reader of the kind shown in Fig. 7 will turn on a light when there is a
parity error on the card being read by it. The card is punched with the
code of Table IV.

5. 6 Construct (draw) a logic circuit which when properly connected to a card
punch (Fig. 8) will punch the proper parity check bit onto each card as it
is punched. The information on the card punch relays conforms to
Table III.

5. 7 Write out a sequence of instructions for your assistant, Steadfast Plodder,
to calculate the cost of a competitor's products (labor plus materials) from
his price list, assuming that his markup is the same as yours. Make out
an instruction sheet similar to Fig. 3.

5. 8 Assume that you have a memory of 1024 cells storing 32 bits each. What
is the total number of bits stored by such a memory? How many relays
are required to access each cell independently? (Assume relays with any
number of contacts are available. ) How many bits are required in the
address for each cell?

5. 9 During each instruction cycle of a computer:
(a) how many times is the instruction counter incremented
(b) how many times is the instruction register changed?
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Chapter A-6
PROGRAMMING

1. Introduction

Programming is problem analysis followed step-by-step implementation
of the mathematical or logical solution to the problem in a computer-executable
language.

"Analysis" in this context does not necessarily refer to the initial parts of
the problem-solving process in which the laws of natural (or social) science and
the techniques of mathematics are brought together. The programmer need not
always be a scientist or mathematician himself; whether he is or not, he usually
takes a vaguely expressed mathematical or logical solution - his or some other
person's - and translates it into an algorithm*: a tightly organized, unambiguous
sequence of instructions whose mechanical execution will ield proper answers
in a finite amount of time.

This finite instruction sequence is often detailed by means of a flowchart,
and the last step of translating the contents of flowchart boxes to machine language
instructions for a specific computer is referred to as coding. In this chapter we
will concentrate on learning how to code for our specific machine, but it must be
emphasized that the programmer's primary task is not the essentially mechanical
one of coding from flowcharts, but rather the composition of the flowcharts them-
selves, i. e., the construction of algorithms. The examples chosen are .such that
you will be able to perform all steps in the analysis and implementation.

2. Review

Before we discuss coding technique, let us briefly review the properties of
the little computer we designed in the last chapter. Referring to Fig. 1 of Chap-
tcr 6 (a reproduction of Fig. 19 of Chapter 5), we see that our computer has the
five basic functional components block-diagrammed in Fig. 6 of Chapter 5: Input,
Output, Arithmetic Accumulator, Memory and Control. Input and Output functions
are performed by punched-card-handling devices, the Accumulator consists of a
binary adder (and subtractor) and control relays, and Memory is made up of 100
words**, addressed 00 through 99, each of which holds 3 decimal digits plus sign.
Control in our machine is maintained by the Control Unit, consisting of two timed
circuits and two register/cell selectors which function as rotary switches to con-
nect specified devices and memory cells. There are also the two auxiliary regis-
ters for storing the current instruction and its address (or the address of the next
instruction). instructions, when "fetched" from memory to be copied signless into
the instruction decoding circuits, are separated into a first "op code" digit (add,

A word derived from al-Khowarizmi, the name of a famous 9th-century Asian
mathematician, who invented the "shift and add" algorithm for multiplying deci-
mal numbers discussed in Chapter A -3.

*:.14
A word is defined as the contents of any memory location.
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subtract, punch, store, jump, etc. ) and a two-digit "address" whose contents
are to be used in the operation. (For certain op codes (store, shift), the address
specifies where the contents of the accumulator are to be copied, or the extent
of a shift.)

Instructions and their data are stored together in Memory, and are indis-
tinguishable, to the computer, from one another there. This common storage of
data and instructions provides stored program capability and, as we shall see
in section 11 of this chapter, accounts for the general-purpose flexibility of the
computer. Meanwhile, how does the machine distinguish data from instructions?
The answer is unambiguous: only those words whose addresses appear in the
instruction counter, and which subsequently appear in the instruction register,
are interpreted by the machine as instructions (during step III of the instruction
'cycle). It is therefore the programmer's responsibility to ensure that only those
words which he puts into memory as instructions appear in the instruction regis-
ter. Having seen in the snapshot sequence of section 9 of Chapter A-5 how the
various units of the computer interact in the instruction cycle under the Control
Unit's supervision to fetch (I), increment (II), execute (III) and test (IV), we will
leave this level of circuit detail to concentrate on the effects of the individual in-
structions.

3. The Ten Basic Operations of our Com uter

We start by defining the basic instruction set of our machine: those-opera-
tions which the logical circuitry of he machine is capable of decoding and execut-
ing. We encountered most of these instructions in the last chapter, but we have
added some new ones, the so-called branches (jumps), both conditional (op code
= 3) and unconditional (op code = 8), and the conditional halt (op code = 9).

If the instruction is symbolized as a 3-digit word (XYZ), then the first digit
(X) denotes the operation to be performed and the second third digits (YZ1 denote
data appropriate to the instruction. The ten possible values of X, and the opera-
tions each calls for, are indicated below in Table 1. In the following examples,
the meaning of each of these instructions will become clear.

4. Adding Two Numbers

We are now ready to study the application of the operations of Table 1 to
specific arithmetical and logical practice problems. We'll begin with the easy
one of adding two unknown numbers p and q, which have been previously punched
and placed on the top of the card reader stack. The flowchart for this problem
(Fig. 2(a) of this chapter) is simple, but we include it for the sake of illustration.



www.manaraa.com

LSTART
a, q I 2

p+q -or] 3

I PUNCH r 4 --61 STOPS 5

Fig. 2 (a) "Macro" flowchart for r = p + q

Table 1 The Basic Instruction Set

X = 0 (input):
a) copy into adress YZ the word on the top card of the input card stack there-

by "erasing" the previous contents; then advance (i.e., remove) the top card
of the stack.

b) If the input card is blank (or the stack is empty), reset the instruction coun-
ter to 00, set the "run-stop" switch to "stop" and advance (i.e., remove)
the top card of the input stack.

X = 1 (clear and add):
a) Clear the accumulator to 000. Copy into the accumulator the word at ad-

dress YZ. (Do not erase or change the word at address YZ.)

X = 2 (add):
a) Add to the accumulator the word at address YZ. (Do not erase or change

the word at address YZ. )

X = 3 (test accumulator contents):
a) If the contents of the accumulator are zero or positive, go on to the next

instruction. If the contents are negative, set the instruction counter to YZ.

X = 4 (shift):
a) Shift the number in the accumulator left Y places; then shift in right Z places.

X = 5 (output):
a) Copy the word at address YZ onto the blank output card on top. Advance

(i.e., remove) this card. (Do not erase or change the word at address YZ.)

X = 6 (store):
a) Copy the contents of the accumulator into the address YZ, thereby erasing

its previous contents. (Do not erase or change the word in the accumulator. )

A -6. 4



www.manaraa.com

X = 7 (subtract):
a) Subtract from the contents of the accumulator the word at address YZ.

(Do not erase or change the word at that address.)

X = 8 (jump):
a) Replace the second and third digits (the address component) of the word

stored at address 99 by the count in the instruction counter. (The first
digit - the operation component - of the word stored in 99 is permanently
set to the value "8". )

b) Then reset the instruction counter to YZ.

X = 9 (halt and reset):
a) If the address component (YZ) of the word in the instruction register is 00,

set the instruction counter to 00, and set the "run-stop" switch t.o "stop".
b) If the address component of the word in the instruction is not 00, and if

the "overflow indicator" is on, reset the instruction counter to YZ.
c) If the overflow indicator is not on, go on to the next instruction.

Notes:

1) For reasons to be explained later, the contents of address 00 are perman-
ently wired to +001.

2) Also, the op code digit at address 99 is permanently wired to 8.
3) A blank card represents the "number" -000 which can therefore not be read

in, nor produced by an arithmetic instruction. Thus (-A+A) and (A-A) both
yield +000 as answers.

Box 1 specifies the start of the computations; box 2 specifies that two numbers
are to be read and stored in two addresses symbolically identified by p and q.
Note the similarity between referring to unknowns by letters in an algebraic equa-
tion (r = p + q) and by symbolic address, i.e., by letters corresponding to actual
memory locations in the machine (p + q = r). Our machine operations will not
be dependent on the specific contents of cells any more than algebraic equations
are dependent on the specific values assigned to variables. You will see how this
lack of dependence contributes to the general-purpose-ness of computer programs.

Box 3 is read as "take the contents of memory location p (whatever number
that is), add the contents of memory location q (whatever number that is), and
store the calculated result in temporary memory location r"; this is customarily
abbreviated as "p plus q into r". Box 4 calls for output, and box 5 for the end
of this computation. Not7"Trat we called for an addition of two numbers, an
operation not implementable with a single machine instruction, since each mach-
ine add uses the accumulator contents as one of its operands. Using the technique
learned in Section 6 of Chapter A-5, we must clear and add one number, then add
the next to it. Thus we see that Fig. 2 (a) of this chapter was not a detailed or
"micro" flowchart, which can be translated line for line into mTaine code. Hence
we must break down the "macro" flowchart (i.e., translate it) into the "micro"
flowchart (Fig. 2 (b)), after which we can code it, one line of code for each line
of the micro flowchart. (Only the "start" instruction is done manually, by push-
ing the "run-stop" switch.)
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[I READ p
2 READ q

3
4
5

6

7

CLEAR AND ADD p INTO ACCUMULATOR (AC)
ADD q INTO AC
STORE AC IN r

Fig. 2 (b) "Micro" flowchart for r = p + q

The coding process is obvious as soon as we decide which memory locations ought
to represent the variables p, q and r, and where the instructions should be stored.
Arbitrarily, we decide to store the required instructions in locations 10 to 16,
and p, q, and r immediately following in 17, 18 and 19 respectively. We sym-
bolize this memory assignment below:

address contents
10

17
18
19

program

q
r

J
IMMO EMM. OMEN.

We can now uniquely translate the flowchart lines, since we know the op code digit
X (see Table 1) and the YZ address digits for p, q or r for each line, as shown in
Fig. 2 (c).

microflowchart
step no.

microflowchart equivalent
line machine code stored in location

1 Read p: + 0 17 10

2 Read q: +0 18 11

3 p +1 17 12
4 + +2 18 13AC q
5 AC--r: +6 19 14
6 Punch r: +5 19 15
7 STOP: +9 00 16

pq

17

variables 18
r 19

Fig. 2 (c) Coding for r = p + q

A -6.6
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Having (1) composed our algorithm, and (2) coded it, we must now (3) load the
program into the specified memory location=tart the machine (4) executing
it. While these four steps are typical of the normal flow of events, we shall
omit details of the last two steps for a while, except to note that the machine is
started by setting the instruction counter to 10 and setting the "run-stop" switch
to "run". Fig. 2 (d) shows what happens to the accumulator and the three vari-
able locations as each instruction is executed in turn. Assume that the two top
Memory
Location 0 1

Program Step
2 3 4 5 6

17 000 058 058 058 058 058 058 058

18 000 000 003 003 003 003 003 003

19 000 000 000 000 000 061 061 061

Accumulator 000 000 000 058 061 061 061 061

Fig. 2 (d) Sequence of actions caused by program for r = p + q

cards held + 058 and + 003 respectively for this use of the program. The first
instruction is 017. The digit 0 commands the machine to clear (erase) the word
at the address indicated by the second and third digits and to copy into it the num-
ber on the top input card. Therefore, the computer copies the number 058 from
the input and deposits it in memory address 17 (thereby erasing the previous word
in 17). As each instruction is "fetched" from the memory to the instruction regis-
ter, the count in the instruction counter increases by one. So, now, the control
goes to address 11 and brings the contents (018) to the instruction register. This
instruction says to copy the number 003 from the top (originally the second) card
into address 18. Thus the two numbers are now stored in the memory and ready
for addition.

To carry out the operation of addition, instruction 117 says to copy into the
accumulator the contents of address 17, namely 058; instruction 218 says to add
to the accumulator the contents of address 18, namely 003. Thus the accumulator
now contains the desired sum.

The remaining operations are devoted to extracting the sum and putting it
on an output card. To execute instruction 619, the computer copies the accumula-
tor (the desired sum) into address 19. Instruction 519 causes the word in address
19 to be copied onto an output card. Thus we have punched the solution to our
problem. The final instruction, 900, tells the computer to reset the instruction
counter to 00 and to set the "run-stop" switch to "stop". If we now wanted to add
two new numbers we would merely punch them on cards, place them on the top of
the input stack, reset the instruction counter to 10 and push the "run-stop" switch
to "run". Thus, by writing the program using addresses of variables whose con-
tents are read in at execution time, we have made the program general for adding
any two such numbers, and therefore re-usable.

A -6. 7
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5. A Program which Triples Numbers: The "Unconditional Jump"

Each of the operations which our computer can perform could obviously
also be performed by a human being. However, since each of its .operations can
be executed in as little as a thousandth of a second, it can easily out-perform the
human being though it is merely doing what its program, and therefore its human
programmer, tells it to do. For example, suppose a retail merchant's list price
for items is three times the manufacturer's price. For each of a large set of
manufacturer's prices, the merchant might have these prices punched on cards
in a form whici can be accepted as input by our computer, which will then punch
the list prices on cards. Thus, the number + 298 written on an input card could
be interpreted as $2.98. In order to simplify our program, we shall also assume
that each of these prices is less than $3.34; otherwise a created list price might
exceed $9.99, which is the largest number our computer can print on a single
output card. Figures 3 (a) and (b) show macro and micro flowcharts for a pro-
gram which reads a number, multiplies it by 3, punches it, and jumps to the be-
ginning of the program for another round.

Note that the macro flowchart in these problems is really nothing more than
a two-dimensional precise re-statement of the English language specification of
the problem, and gives a machine-inde endent algorithm. The micro flowchart,
once again, is machine-specific an is translatable line by line, one-for-one, into
machine code instructions Iri7g. 3 (c). Here are two specific points to note:

1) The two identical AC + x AC instructions have different effects, since
the accumulator contains different numbers upon execution of the instructions.
2) Since we no longer need x, we can save a storage location by storing the
final AC contents over x. Thus the micro flowchart is more efficient than
the macro flowchart.

I START I

I READ x

I3.x -10.y1

I PUNCH y

1

I START

I READ

AC
AC + x - AC
AC + x AC

AC-6,x

(PUNCH

Fig. 3 (a) Macro flowchart for Fig. 3 (b) Micro flowchart for
y = 3x "x = 3x", i, e. , 3x.x

A-6.8
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Instruction
Step Memory Location Word Stored What Computer Does

1

2

3

4

5

6

7

11

12

13

14

15

16

017 Copies number
from input card into
address 17

117 Copies number
from address 17 into
accumulator

217 Adds number from
address 17 into
accumulator

217 Adds number from
address 17 into
accumulator

617 Erases number in
address 17 and copies
in contents of
accumulator

517 Copies number in
address 17 onto
output card

810 Sends computer back

tto
step 1 to repeat
sequence with a

new input card

Fig. 3 (c) Coding for multiplying a number by 3

Assume that the code is stored beginning at location 10; the instructions
shown in Fig. 3 (c) result. The only new instruction is 810: it loads 17 (the in-
struction counter's content) into location 99 for reasons not relevant to this use
of the instruction and, what is relevant here, resets the instruction counter to
10. This forces step I of the next instruction cycle to fetch 017 (the first, instruc-
tion in this program). so that the program is effectively rerun. The pattern
is referred to as a simple look, and we detect simple loops in coding as jumps
back to previously executed instructions. Loops are fundamental to the general-
purpose capability of computers. This particular type of simple loop is also
known as a "read loop", since it causes a cycle of "read a card, do something",
"read a card, do something", etc.

Since the program loops, how does the machine ever halt? The end of the
list is signified by a blank card; when the 017 instruction is executed with a blank
card, the 0 instruction (see its definition in Table 1) causes the "run-stop" switch
to be set to "stop". We say that the loop is "terminated" by the reading of a
blank card. As a matter of programming practice we will from_now on cease to
use the X = 9 halt instruction to terminate programs, but will loop back to the
beginning of the program until the data cards are exhausted.

A -6.9
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6. The Call-Up Problem: The "Conditional 3.'3212'2.

As we stated in section 10 of Chapter A-5 (p. 57), the ability to make simple,
two-way comparisons between numbers and to choose one of two alternative "next
instructions" is essential to the general-purpose capability of a computer. In this
section we will show how to use the two-way comparison (i.e., the conditional
jump), how to combine conditional jumps with simple loops and how to program
more complicated questions in terms of combinations of the simple conditional
jump. As our first example, wa will choose a very common and practical "data-
processing" problem of the type found throughout business, industry and govern-
ment. It concerns the maintenance of personnel records and various types of
questions which can be asked about such files of people.

Assume, for instance, that a listing of Selective Service (SS) numbers has
been punched on cards, with one SS number per four successive cards: district
number on the first card, board number on the second, year of birth on the third,
and a unique personal identifier on the fourth: e.g., 011 102 046 201. Signs are
ignored. In preparation for a general "call-up", a listing of men born, say, in
1950 must be produced. We will scan the cards, checking the third card in each
group of four for the year 050. The full SS number for each man born in 1950 will
be punched. The macro flowchart for this program is shown in Fig. 4 (a). It is
important to note that this program, like the previous one, contains a loop. Loops
allow a single concise representation of instructions which are to be executed re-
peatedly. We could have written a separate group of instructions to read each SS
number, etc., but this would make the program indefinitely long, since we do not
know the exact length of the list to be inspected.

The only problem in the implementation of this macro flowchart
(Fig. 4 (a))'is that of comparing the third card to 050. The conditional jump in-
struction allows only the testing of the accumulator sign. Hence we subtract 50
and test the sign; a negative sign obviously indicates no match, but a positive sign
can mean a positive value of zero. So, to test for zero, we then subtract 1. Now

I START

4
READ ONE SS NUMBER (I.E 4
CARDS) INTO CONSECUTIVE
MEMORY LOCATIONS ni, n2
n3, AND n4

A DIAMOND SHAPE
INDICATES A
DECISION OPERATION

(I.E. A CONDITIONAL
BRANCH

Fig. 4 (a) Macro flowchart for Selective Service Call-Up Program
A -6. 10



www.manaraa.com

if the sign is negative, we know that the original number in the accumulator was
50 (e.g., (50-50 - 1) < 0). See Fig. 4 (b).

If we arbitrarily decided to store the four cards at locations 60 through 63,
the constant 50 in 25, and 001 in 26, the actual coding would appear as in Fig.
4 (c). The constants 50 and 001 could have been read in by the program during
execution, but in this case we stored them along with the instructions. Also,
when coding the program, the address portions of the conditional branch instruc-
tions were left blank until the entire program was written and the addresses to
which to branch were ascertained. How would you generalize this program to
punch out a list for an arbitrary year, instead of 050?

L

ISTART

READ

CARD 1 *ill
CARD 2>n2
CARD 3 -3 n3

CARD 4>n4

n3 > AC

AC-50 AC

AC-1

..

ci

PUNCH n1

PUNCH n2

PUNCH n3
PUNCH n4

Fig. 4 (b) Micro flowchart for Selective Service call-up program

*An easier to understand, though less efficient method for checking equality would
be to ask you where two successive "no's" indicate equality of x and y.

A-6.11
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Address . Instruction
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

:. 060
061
062
063
162
725
310
726
320
810
560
561
562
563
810
050
001

Read SS number

Load year to test against
If less than 050

read another SS number
If 050, go to"punch this SS number...
If not, read another SS number

Punch this SS number, then
begin again

Constants

Fig. 4 (c) Coding for Selective Service call-up program
7. Some Exercises Using Simple Loops and Tests

We now turn to three additional sample problems, each of which involves
multiple decisions and a read loop. They have been programmed down to the
level of micro flowcharts, but the purely mechanical jobs of memory assignment
and coding is left as an exercise. The flowcharts are annotated when new ideas
are presented.

Morse Code Problem: For our first exercise we shall assume that each in-
put card contains a three-digit-plus-sign number that represents a single letter
in Morse Code, where + stands for 'dot', - for 'dash', zero for 'dot' and one (1)
for 'dash'. Furthermore, digit positions unused by Morse Code are filled with
nines (the "letters" all start on the left with the sign). Thus the letter C is rep-- . - .

resented as - 0 1 0, and the sequence of letters SOS would appear as + 0 0 9,
- 1 1 9, + 0 0 9. To scan a message encoded on cards for the sequence "SOS",
we must check every card until we find an "S" and then check the next card for
"0". If the next card is not "0", we begin scanning for an "S" again; otherwise
we look for the second "5", etc. For each card that is not part of an ''SOS" se-
quence, we will punch 000; for an "SOS" sequence, we punch 999, and return to
look for another sequence. (Thus for the sequence SOT we don't punch for the
first two cards but punch three times in a row when the third letter is encountered
to make up for the two missed ones.) You may wonder why we punch 000 at all -
it is included only to make the problem slightly more interesting. Could you sug-
gest something useful to punch instead?

A-6.12
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START

READ ONE
CARD

READ ONE
CARD

READ ONE
CARD

PUNCH 000

---- PUNCH 000

PUNCH 999

--->1 PUNCH 000

®

o

Fig. 5 (a) Macro flowchart for Morse Code recognizer program
A-6. 13
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START

READ CARD > n

n AC

CARD --> n
n --SAC

CARD --> n
n --> AC

®
PUNCH 000

PUNCH 000

PUNCH 999

< 'I'

PUNCH 000

Note 1. While the decision boxes
(the diamond-shaped boxes) are not
strictly micro flowchart boxes,
their micro expansions are similar
to that of

in Figure 4 (b) of the call-up prob-
lem, and are omitted for the sake
of brevity.

Note 2. There are four simple loops
in this program, each back to the
read. Notice that the "No" exit on
both the second and third tests punches
a card and jumps to another section
of coding (already used at another
part of the program). This section
of coding, similarly, punches and
jumps to yet another section of cod-
ing. We could have coded the third
exit, for example, to punch three
cards and jump directly to the read,
thus:

PUNCH 000 B
READ PUNCH 000

PUNCH 000

However, the present "double-duty"
use of instructions by different parts
of the program saves instructions
and is therefore more efficient.

Note 3. We have previously encoun-
tered simple read loops that terminate
program execution upon reading a
blank card or on an empty stack. In
contrast, each of the three inner loops
in this program (the sections of code
that search for the first 'S', the '0',
and the second 'S' respectively) is ter-
minated (completed) as a result of an
arithmetic operation. However, 21.....-o-
gram execution continues in this case
(i.e., when the first 'S' is found by
the first loop, the program exits to
the second loop to check forE7ro',
etc. ).

Fig. 5 (b) Microflowchart for Lorse Code recognizer program
A -6. 14
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Largest of Three Numbers Problem: To determine the largest of three
numbers we must, of course, arithmetically compare the three and discard the
two smaller ones. Our straightforward method is to compare two (by subtract-
ing), to choose the larger, and then to compare that one to the third number. We
will simplify the problem by assuming that overflow (described in section 5b)

will not occur (e.g., careful inspection of the process shows that for A-B where
B is a large negative number, overflow may occur; this would increase the prob-
lem's complexity greatly). For each group of three numbers compared we will
then punch out the largest.

START I

READ THREE CARDS
INTO n1 n2 n3

Note: Even though we only test
for one number to be less than
another, the algorithm is valid
if two numbers are equal. In
this case, it does not matter
which one we choose of two equal
quantities.

I PUNCH n

PUNCH n3 I ®

PUNCH n2

Fig. 6 (a) Macro flowchart for largest-of-three-numbers problem.
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START

>1

CARD I -->ni
CARD 2>n2
CARD 3>n3

n1 --->AC
AC n2 > AC

ni SAC
AC n3 >AC

n2 >AC
AC n3 AC

PUNCH

PUNCH n

< <

PUNCH n2

Fig. 6 (b) Micro flowchart of largest-of-three-numbers problem

A-6. 16
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Card game: In a card game called 21, a "player" and a "dealer" are
originally dealt two cards. They then elect to receive more cards, aiming to
get the sum of the values of the cards as close to 21 as possible, without ex-
ceeding 21. The player or dealer may receive as many cards as he wants but
must report if his total exceeds 21. The player competes with the dealer and
the one whose total is closer to 21 wins. In case of a tie, the dealer wins. Our
last exercise for coding is to "simulate" the action of the dealer (not the entire
game) on a computer. We must keep in mind the basic rillemsTthe game, as
well as make certain assumptions that will allow us to represent the necessary
"props ", e.g. playing cards, etc., in machine-readable form. As a simplifi-
cation, we first assume that an ace, represented by 001, can be only a "one"
card (and not an "eleven" card, as is usually allowed). Next, number cards are
represented on punched cards, one playing "card" per card, as 002 through 010,
and all face cards (jack, queen, king) are represented by 010. For this example,
we will assume that the player has stopped receiving cards as he is content with
his total which is under 21. Our program ("dealer") will read ("draw") cards,
one at a time, adding as it goes. Of course, the dealer must know when to stop
reading cards, so we will arbitrarily choose a total of 17 as our stopping point
(e.g., when the dealer's total is equal to or greater than 17, no more cards
will be drawn). We shall assume that the very next card on the input stack con-
tains the player's total (our deck has been carefully stacked!). After our "dealer"
stops "drawing", -we will compare the dealer's total and player's total and punch
000 if the dealer wins and 999 if he loses. We shall then begin the game again.

START

"DRAW" ONE CARD,
ADD IT TO THE

PREVIOUS TOTAL

IS TOTAL
<17

N

READ IN PLAYERS
TOTAL

DEALERS
TOTAL _PLAYER

TOTAL BUT
2I
2

PUNCH 999

PUNCH 000

Fig. 7 (a) Macro flowchart for the dealer program
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START

A

V

000> AC1
AC > T

READ CARD-> n

T > AC
AC + n ACAC > T

N

0 READ CARD > n

AC>21
7

N

T >AC
AC n >AC

N

PUNCH 000
(DEALER WINS)

Note 1. Since the program is
to be used more than once, T
(the dealer's total) must be set
to zero each time, since incor-
rect answers would obviously
occur on the second and subse-
quent usages if T were not in-
itialized to zero. In general, a
program which is to be used
again and again should contain
(often in the early part of the
program) instructions which ex-

set (or initialize) the
contents of appropriate addres-
ses to their desired values.

Note 2. We must temporarily
store ("save") the accumulator
because we will destroy its pre-
vious contents in performing the

test.

Note 3. This card must be
"flushed" from the stack even if
the dealer goes over 21, since
the program must restart. There-
fore we read it even before check-
ing for 21.

Note 4. As in the Morse Code
problem, we have an example of
a loop that terminates as the re-
sult of an arithmetic test.

PUNCH 999 ®
(PLAYER WINS )

Fig. 7 (b) Micro flowchart for the Dealer program.
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8. Indexed Loops: m x n

In section 5 we saw that the computer multiplies a number by three by ad-
ding the number to itself twice, i.e., it multiplies by repeated addition. We
saw, too, that the computer could be programmed to go back and repeat the cycle
using another number fed in from a new input card. The looping technique can
be extended, for example to the problem of multiplying two arbitrary numbers,
n and m, by repeated addition.

In studying this program, it may help to keep in mind some broad require-
ments on what the computer must do. The computer is required to add n to it-
self m-1 times. Following each cycle of operations, the partial sum is increased
by n,--Zrile the number of further additions required is decreased by one. When
the quantity m-1 becomes negative, the adding process is complete and the com-
puter tests m-1 to see if it is positive or negative, each time through the loop.

START

SIMPLE READ
LOOP

INDEXED LOOP WITH
ARITHMETIC

111611holiorilleal...

1

I READ n, m

N

0

AC+n C
I

siPUNCH AC I

Fig. 8 (a) Macro flowchart for program to multiply m x n
I START I

-- P
0 - AC
AC

READ n I 0
READ m

m -PAC
AC-1 - AC

AC m

AC+n - AC
AC- n
p

PUNCH p

Fig. 8 (b) Micro flowchart for program to multiply m x n
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Memory
Address Stored
Location Word Comments

Initialize

Update and
test index

Do addition,
computation;
loop back

Clean up

Data and
storage

07 125

08 621

09 022

10 023

11 123

12 724

13 623

14 319

15 121

16 222

17 621

18 811

19 521

20 807

(p)
(n)

(m)
001

000

21

22

23

24

25

Copy 000 in accumulator
Copy 000 from accumulator into
address 21 (p)
Copy n from top card into address 22

Copy m from next card into address 23

Copy m from address 23 into accum-
ulator
Subtract word 001 in address 24 from
m in accumulator. This gives m-1.
Copy m-1 from accumulator into
address 23
Test accumulator contents m-1. If
it is 0 or positive, proceed tonext
instruction 15; if it is negative,
jump out to address 19.
Copy word from address 21 into accum-
ulator (000 initially)
Add n from address 22 into accumulator
Copy accumulator into address 21 to
save partial sum prior to test
Go back to address 11 and repeat
(looping)
m-1 was negative - therefore finish
by copying word in address 21 on
output card
Loop back to beginning and repeat
program for new input

Note: after each repeat operation,
the number in address 21
increases by n; that in add-
ress 23 decreases by 1.

Fig. 8 c) Coding for program to multiply m by n

(Questions: Is it necessary to restrict the value of m to be no larger than 9?
Is the order of the two input cards with numbers n and m significant, or may
the position of these two cards be interchanged?)
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The variable m associated with the inner loop (i.e., not the read loop)
is called an index (or often "counter" or "clock"), since it is changed each
time the instructions in the loop are executed, and controls the termination
of the loop. Thus,m, as one of the multipliers, was not used directly in an
arithmetic operation, but indirectly as an index, controlling arithmetic
operations.

Terminating an indexed loop (i.e., exitting from it) is usually done by test-
ing the index to determine when it becomes larger or smaller than some specified
value. In our program the loop was terminated when the index became negative.
The position of the test in the program is usually flexible. Could we have inter-
changed the test and the addition of n? Would any other changes in the program
be required?

The initialization of indices for indexed loops, and the problem of testing
indices to determine exactly when exits should be made from loops are among
the most vital topics in computer programming. We shall meet with them again.
A symbolic representation of a generalized indexed loop process is demonstrated
in the flowchart below (Fig. 9).

READ LOOP

DONE

CLEAN UP

I START I

'INITIALIZE

TEST INDE

CONTINUE
INDEXED LOOP

UPDATE INDEX

I DO COMPUTATION I

Fig. 9 Flowchart illustrating indexed looping

One other important principle shown in this multiplication example is that
we can "simulate" through suitable programming any operation (in this case,
multiplication) which is not built into our basic computer. We will come back to
this crucial point also.

As an exercise, you should write a micro flowchart and code for finding the
sum of the first n positive integers (S = n + (n-1) + (n-2) + + 1). Read n from
a card and use an indexed loop in which the index is added to the partial sum.

9. Another Data-Processing Problem: Shifting

As we saw in several previous examples, computers need not be used to
perform exclusively arithmetic tasks. One non-numerical job which then can
do is the chan-ing of the symbolic form of the representation of data. Take the
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problem of the principal of a school who has decided to change the grading system
at that school. He has been using a three-digit numbering system for cards in
his file. The first two decimal digits were a code which told which student the
card referred to. The last digit represented a student's grade in a new experi-
mental course on the programming of computers. Formerly, an A recorded as
"4", B as "3", C as "2", D as "1" and E as "0". For instance, a card contain-
ing "793" meant that student "79" had received a B in the course. He wishes to
changes his system of recording grades to one in which A is "5", B is "4", C is
"3", D is "2" and E is "1".

At the same time that he makes these changes he wants to find out how many
A students there are. Finally, he wishes to change the form of the data on the
cards so that the first digit will be the new grade, and the last two digits will be
the student code-number. For instance, the card which contained the number
"793" should be changed to a card which is to contain the number "479"; this card
should not be included in the count of those students who earned an A. (What
should be done with a card containing, originally, "394"?)

A student in the programming course has offered to write a program which
will take the original cards as input, and which will produce the new set of cards.
The new cards which are produced are to be followed by one more card which will
tell how many A's there are. This cannot be confused with the other cards be-
cause there are fewer than 100 students in all and the first digit on this last card
will therefore have to be 0.

The set of original input cards will be folowed by a blank card so that the
computer will know where the end of the set is. This blank card will be followed
by one other control card containing the number 855. The purpose of the last two
cards will become evident in the discussion below.

The Flowchart and Program: In Fig. 10 is a flowchart (somewhat a mixture
of a macro and a micro flowchart) which will aid in the explanation of the student
programmer's plan. He has called the three digits on a typical input card, j, k,
and g. The first two are the student's code number and the last is the grade on
the original numerical scale. He first sets the contents of a location called "count"
to 0. After bringing the contents of the first card to the accumulator he shifts
them so as to place the grade g in the leftmost position. (A detailed explanation
of the shift instruction is given in Table 3). By adding 100 to the result he creates
the new grade g + 1 (followed by two 0's), and stores it for future use. By sub-
tracting the number 500 from this result he creates a difference which is negative
if the student's grade was B or lower, and which is zero if the student's grade was
A. By testing this difference he decides whether the count should be increased by
1.

Notice carefully that the arrow which bypasses the step "add 1 to count"
does not represent a loop. It only indicates that certain instructions may be omit-
ted under some circumstances.

By bringing the original input card contents to the accumulator again and
shifting them he creates the number (0, j, k) which has the student code-number in
the correct new position. This number, added to the previously stored (g+1, 0, 0),
gives the desired data in the new format. This is copied onto an output card and
the entire procedure is repeated.
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ISTART

Nit

INITIALIZE COUNT
TO 0

READ CARD INTO n 0
1

LOAD n (j, ksg)
INTO AC

SHIFT AC TO
GIVE (g,0,0)

ADD 100 TO GIVE
(g+1,0,0)

ADD I TO COUNT

SHIFT AC TO
GIVE (Otis k)

Nt,

ADD THE m TO
GIVE (g+Isisk)

STORE AND
PUNCH m

Fig. 10 A flow chart for modifying grade records
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Instruction
(XYZ)

Meaning of the
Instruction

Final Contents of
the Accumulator
(symbolized as
+ abc initially)

400 no shift + abc

401 Shift one to right + Oab

402 Shift two to right + 00a

403 Shift three to right + 000

410 Shift one to left + bc0

420 Shift two to left + c00

430 Shift three to left + 000

411 Shift one to left and one to right + Obc

412 Shift one to left and two to right + 00b

421 Shift two to left and one to right + c00

422 Shift two to left and two to right + 00c

Table 3 How shifting affects accumulator contents

Note 1: Digits shifted out of the accumulator are lost,, and only zeros can be
shifted in.

Note 2: 430 cards can be used to put + 000 in the accumulator as an alternative
to bringing it in from a storage location. (Assume that + 000 and - 000
are identically + 000.

In this program the indexed loop is not terminated by testing the value of
an index against some other quantity, but rather by the reading of a blank card.
By terminating the program in this manner, the student has created a problem,
because the computer will stop before the number which he has called count has
been printed out. We will see how this problem is solved.

The Pur ose of the Control Cards: We have traced the execution of the pro-
gram up to an including t e point w ere the computer tried to read the blank in-
put card which marked the end of the set of students' grade cards. At that point
the computer stopped with its instruction set to 00. If the "run-stop" switch is
again switched to "run" the first instruction which will then be executed will be
the one at address 00.

Now remember that our computer has the property that the permanent con-
tents at address 00 are + 001 (refer to Table 1). If the computer executes this
instruction it will copy the top input card (the programming student has written
the number 855 on this next card) into memory address 01. When, at the next
step, the instruction at 01 is executed, it will be the "control" word 855 which
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Address Word Comments

37 4 301 Initialize count to 0 by shifting acc-
umulator 7Ftthree places, leaving

38 6 58 zero.
39 0 57 Copy top input card and
40 1 57 bring it to the accumulator
41 4 20 Shift, to give (g, 0, 0)

42 2 60 Add 100 to it and
43 6 59 store as new grade (g + 1, 0, 0)

44 7 61 Subtract 500 and test result. Go
45 3 49 to address 49 if result is negative.
46 158
47 2 62 Add 1 to count
48 6 58
49 1 57 Bring card to the accumulator again
50 4 01 Shift, to give (0, j, k)
51 2 59 Add new grade, to give (g+1,j,k) and
52 6 57 store as card
53 5 57 Print out card
54 8 39 Return to copy in another card
55 5 58} Print out count and
56 9 00 stop

57 0 00 (n: card)
58 0 00 (count)

59 0 00 (m: new grade)
60 1 00

61 5 00 constants
62 0 01

Fig. 11 The Program for modifying grade records

has just previously been put there. The instruction is interpreted as "jump to
address 55 to find the next instruction to be executed". At addresses 55 and 56
we find instructions telling the computer to print out count, and to halt. Thus,
with the price of having to restart the computer, the student has made good his
offer. A more practical solution would have been to place a special control card,
say a + 000, at the end, instead of a blank. Show how you would introduce a test
for this last card in the read loop, so that you could then jump to 55 without an
intermediate halt.
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10. Loading a Program into Memory

We have seen how a program is written. How do we store a program in
the memory? This is done by what is known as a loading program.

As an example, let us suppose that we wish to load the program in Fig. 11.
The problem is to program the computer so that it will take each instruction word
specified and store it in the address indicated. Thus, it must store 403 at ad-
dress 37. Next it must store 658 at address 38 and so on until the entire program
is stored in address 37 to 62, inclusively.

We do two things. We prepare the deck of input cards shown in Fig. 12.
We program the computer to perform the necessary sequence of operations shown
in Fig. 13. The basic operations are established by means of steps 0, 1 and 2
(address 00, 01 and 02). (We know that in this computer the instruction 001 at
address 00 is permanently built into the circuitry of the computer and so cannot
be modified.) When the run-stop button is pushed the computer automatically per-
forms the instruction 001 which leads to the setting up of a program able to read
each top card, one by one, then store it in the memory. At step 3 the computer
begins the storage of the desired program; it keeps on repeating the instructions
in addresses 00, 01 and 02 until it reaches address 62 after which the top card is
blank so the computer stops. We observe that the preparation of the computer
for the loading operation and the actual loading operation is conducted as one con-
tinuous sequence.

002
800
037
430
038
658
039
057
etc.

Fig. 12 Deck of input cards for loading the program shown in Fig. 11.

Program
step

Memory
Location

Instruction
word Action Resulting

0 Read top card into address 01.00 001
(Top card is 002)

1 the program 01 002 Read top card into address 02.
(Top card is 800)

2 02 800 Jump back to address 00.
3 2nd time

through
00 001 Read top card into address 01.

(Top card is 037)
4 the loop 01 037 Read top card into address 37.

(Top card is 403)
5 02 800 Jump back to address 00.
6 3rd time

through
0 001 Read top card into address 01.

(Top card is 038)
7 the loop 01 038 Read top card into address 38.

(Top card is 658)
Fig. 13 Loading Sequence
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11. Instruction Modification for Indexed Loops

Sum of N numbers: Until now, we have observed the use of simple read
and indexed loops for executing sets of instructions repetitively until some
special condition is met. We will now illustrate an important programming tech-
nique, often used in conjunction with loops, by coding a seemingly trivial prob-
lem twice. In the first version, we will read in N cards and sum the numbers
contained on them; in the second, we will assume that the numbers to be summed
are already stored in N consecutive locations beginning at 15 (we will read only
one card in this version - it contains the number N). The distinction between
the two versions, summing numbers contained on cards or numbers contained
in memory, at first seems rather minor. However, on closer inspection we see
that we have no direct method of summing the numbers stored in memory without
using N consecutively stored add instructions. We shall resolve this difficulty
after we illustrate the first version of the problem. (Both versions will assume,
for simplicity, that overflow does not occur.)

For our first program, the first card will contain N and will be followed
by N cards. We use the number on this first card to initialize a counter which is
"decremented" (i.e., reduced by one) once for every card which is read and added
to the previous total. When the counter becomes negative, we punch the total
aimed begin again.

STARTi
SET TOTAL TO

ZERO
READ CARD

INTO COUNTER
(CONTAIN N )

DECREMENT
COUNTER

READ AND ADD
ONE CARD TO

PREVIOUS TOTAL

Fig. 14 (a) Macro flowchart for addition-of-N-numbers program
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START I

000* AC
AC ->T

CARD1> n

n >AC
AC 1--> AC

AC -> n

PUNCH T

CARD ->b
b --SAC

AC-1-T -AC
AC > T

Fig. 14 (b) Micro flowchart for addition-of-N-numbers program

Address Instruction
10 430
11 625
12 026
13 126
14 724
15 626
16 322
17 027
18 127
19 225
20 625
21 813
22 525
23 810
24 001
25 000
26 000
27 000

- initialize total T to 0

- read and load N into AC

- decrement and store n (counter)
- test n
- if n not negative, read another

card and add to total

- loop
- If n negative, punch total;

return to beginning
- constant

(T - total)
(n - counter)
(b)

Fig. 14 (c) Coding for addition-of-N-numbers program

In our second program, we assume that the first card contains N, the num-
ber of locations to be added. We see immediately that both brograms are quite
similar, each employing an indexed loop (compare the two macro flowcharts).
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START

SET TOTAL TO
ZERO

READ CARD
INTO COUNTER
( CONTAINS N)

DECREMENT
COUNTER

I PUNCH TOTAL

ADD NEXT NUMBER
TO PREVIOUS

TOTAL

Fig. 15 (a) Macro flowchart for addition-of-N-numbers
program using instruction modification

Now, when we try to convert the macro flowchart to the micro flowchart,
we encounter the previously mentioned difficulty with the add-next-number instruc-
tion. If we wrote out the N consecutive add instructions they would like 215, 216,
217, ..., 2 (15 + N - 1). Note that all of these instructions are quite similar. In
fact, each differs from its predec z.ssor only by 001 in the address (i.e., 217 =
216 + 001). Now, remembering that our stored program computer cannot differ-
entiate between data and instructions stored in memory (i.e., both are stored as
3-digit-plus-sign numbers). we can modify the original add instruction 215, in
conjunction with an indexed loop, "manu acture" the rest of the add instructions.
Our program first executes the 215 instruction, stores the intermediate sum from
the AC, and increments and tests the counter. If the counter is not negative, we
have more numbers to add, so we load the 215 instruction itself into the AC, add
001 to it to form 216 (the add for the next number); we then re -store this in the
location which originally contained th-e--275_ reload the intermediate sum into the
AC and branch to the location that contained the 215 (which now has 216 init --
i.e., we now add the next number). Continuing in this manner, we can add all
of our numbers. Noterga this instruction modification technique enables the pro-
gram to alter its instructions and stored data itself during execution, and thus
adds significantly to the computer's flexibility.
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START

000 -->AC
AC --->T

CARD I -->n

n -->AC
AC 1 'AC

AC ---> n

PUNCH T

N

LC:

T -->AC

dACcagrITUKZER:4-a"
AC-->T

V

L -*AC
AC -1-001-0AC

AC L

1

N.B. L: THE INSTRUCTION BEING
MODIFIED

Fig. 15 (b) Micro flowchart for addition-of-N-numbers program
using instruction modification

Address Instruction
48 4031 0-->T
49 668
50 067 read N
51 167
52 766 decrement and store counter (n)
53 667
54 362 test for negative counter
55 168 if not negative, load total T
56 215 L: add next number
57 668 and restore total T
58 156
59 266 modify instruction
60 656
61 851 loop
62 568 if n negative, punch total

3 169 and reset add instructicn
64 656
65 848 branch to beginning
66 001 Constants
67 000 n (counter)
68 000 T (total)
69 215

Fig. 15(c) Coding for addition-of-N-numbers program using instruction mod:fication
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Factory Quota Problem: Another example of a program using instruction
modification and shifting is one which checks the daily production efficiency of
a factory with ten departments. Each day, a card is made up for each depart-
ment in the form ONN, where NN is the expected number of pieces produced.
These are read into the computer in ascending order (for departments 0 through
9) and are followed by cards of the form XNN, where NN is as before and X is
the department number (0 - 9), indicating the actual output of the department.
However, since all departments may not necessarily work on any given day and
do not "quit" at the same time, the department cards may be in any order and
total less than or equal to ten cards.

After reading and storing the ten quota cards, the program will read one
department card at a time, use its department numbers to form a subtract in-
struction, compare the actual output to the quota, and punch the department num-
ber followed by 999 if the quota was met or exceeded or 000 if the quota was not
met. Instruction modification will be needed, both for reading the ten quota cards
(which also requires an indexed loop) and for comparing the production to the
quota.

ISTART

READ ONE CARD I OA

N INCREMENT AND STORE COUNTER
INCREMENT AND STORE READ

INSTRUCTION

Y

(RESET COUNTER I

IRESET

READ
I NSTRUCTION.

I liCAD ONE CARD I 0

II

I ISOLATE DEPARTMENT
NUMBER

PUNCH DEPARTMENT
NUMBER

FORM SUBTRACT
INSTRUCTION

LOAD ACTUAL OUTPUT,
SUBTRACT QUOTA

PUNCH 000 QUOTA MET PUNCH 999

Fig. 16 (a) Macro flowchart for factory quota problem
A -6. 31



www.manaraa.com

I START

COUNT-61
AC -1 -*AC
AC-000UNT

Y

(READ CARD -wn

READ INSTR. -* AC
AC+I-* AC

AC -* READ INSTR

10 -*AC
AC -*COUNT

READ INSTR.-* AC
AC READ

Note. In this program, since we
execute the entire program only
once, the counter of quota cards
to be read in is set in the coding,
and is not read in and reinitial-
ized during execution.

READCARD -*n+ I
n +I -* AC

SHIFT AC FROM
XXX TO 00X

1
AC -*n +2

PUNCH n +2

AC + SUBTR. I NSTR.-*AC
AC - MAIN LINE

n +I -1* AC
SHIFT AC FROM
XXX TO OXX

AC -QUOTA -*.AC

Fig. 16 (b) Micro flowchart for factory quota problem
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Address Instruction
10 148
11

13
648
749

319

test counter, decrement and store
12

14 038
15

17
18

614
810

114 if not exceeded, read card, reset
16 249 read instruction, return

19 151
20

22

648 when exceeded, reset counter
21 150

614
and read instruction

23 0521 read next department card
24 152 J
25
26
27

653
553

isolate department number
and punch it

28 2561 form subtract
29 632)
30 1521 isolate production quantity
31 411)
32 7001 test quota
33 336)
34 5551 if met, punch 999
35 823
36
37 823

554) if not met, punch 000

38 000`
39 000
40 000
41 000
42 000
43 000

quota storage

44 000
45 000
46 000
47 000,
48 010 counter
49 001 constant
50 038 read reset
51 010 counter reset
52 000 (dept. card storage)
53 000 (punch storage)
54 000 1 output
55 999
56 738 subtract instruction t

Fig. 16 (c) Coding for factory quota' problem
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12. Program Segmentation by Subroutines

Suppose you are writing a program that must perform a certain operation
several times, but at different times during the processing; for example, taking
(A x B) + C - (D x E) requires two separate m x n-type multiplication operations.
Rather than writing the entire multiplication coding each time we need it, we
could make our program shorter if we could make just one coding sequence per-
form "double duty for us, as we did with the Punch instructions in the Morse
Code problem. And, indeed, we can do this by utilizing our branch instructions.
Note the programming sequence of Fig: 17 (a).

address instructions

main program

Branch to subroutine
at location d

e rest of program

MI.M11 MEMO .11111111 1/11MP

address subroutine, .

d

.

.
instructions
indicator

Branch to program
at location e

Fig. 17 (a) Programming sequence for subroutir e use

Of course, we want our subroutine to multiply different pairs of numbers each
time we use it, and we want to be able to branch to it from di:ferent locations in
our main program. We thus have two problems: how to pass data to and from
the subroutine, and how to specify the location in the prograr to which we want
to branch after the multiplication is completed. The first dii iculty is solved by
using scratch areas within the subroutine. We write the subroutine so that it
always multiplies the numbers stored at scratch locations a and b and places the
result in scratch location c. Thus, before the main program branches to the
subroutine, it must store the two numbers to be multiplied into a and b. After
the subroutine branches back to the main program, the result can always be lo-
cated by the main program - the subroutine always stores the result in address c.

The second problem is eliminated by the use of the 8YZ branch instruction
at location PQ in the main program (see Fig. 17 (b)). As mentioned earlier,
this instruction places the contents of the instruction counter (PQ + 1, i. e., the
location of the next sequential instruction in the program) into digits 2 and 3 of
location 99 (which always has an 8 in the first digit). It then reloads the instruc-
tion counter with YZ (causing a branch to location YZ). Thus, we enter our sub-
routine at YZ and we exit from the subroutine, to branch back to the main pro-
gram, by branching to location 99. This cell contains an instruction of the form
8 (PQ + 1) in it, which will, in turn, cause a "return branch" to the correct loca-
tion in the main program. In general, it is a good idea for the subroutine to copy
the contents of location 99 within itself, since the subroutine might want to branch
to a subroutine of its own (and would thus need location 99 for its own return
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branch). The saved copy of the contents of 99 is thus used as a last instruction
in the subroutine in place of a jump to 99. (Cell 99 is therefore only used as a
quick method for forming a return branch for later use). A sample subroutine
sequence appears in Fig. 17 (b).

PQ

program

Store data in subroutine
scratch areas a, b
Branch to subroutine at
YZ (automatically setting
return branch to PQ+1 in 99)

PQ+1 First sequential instruction
after branch to subroutine

YZ

R
a
b
c

Subroutine

Save 99 in R

Proces sing

Store result in C
return branch

scratch
ft
II

Fig. 17 (b) Sample subroutine sequence

We will now illustrate the use of this technique, called subroutining, by
recording as subroutines two previous problems and one new problem.

In the m x n multiplication program of section 8 (see Fig. 8 (c)), the read
instructions at locations 9 and 10 are replaced by a "load from 99" instruction
and a "store into 20" instruction (this saves the return branch set up by the
8YZ instruction used to branch to the subroutine)(see Fig. 17 (c)). Hence, in-
stead of stopping with a 900 instruction at location 20, the subroutine returns to
the instruction following the subroutine branch in the main program (PQ + 1).
In addition, we put a "load 21" instruction at location 19 instead of the punch in-
struction. Thus, the results of the multiplication operation are in the accumu-
lator when processing resumes in the main program. Before branching to the
subroutine, the two numbers to be multiplied are stored in locations 22 and 23
by the main program.

Similarly, the Call-Up program of section 7 can easily be converted to a
subroutine that will check any of the four fields for any desired number. First,
we must add two instructions at 08 and 09 to save the return branch (since the
subroutine inputs SS cards from the stack, we will use the device of a blank card
to signify the end of the data, and will use the trick of the student in section 9
to flip the "run-stop" switch). If we store the return branch in location 27, then
the control card following the blank card will by 827. Each time the main pro-
gram branches to the subroutine, it first stores a different load instruction at
14 (depending upon which of the four cards is to be inspected) and also stores a
different constant at 25 (e.g., if the district number of 5 was to be searched for,
160 would be stored at 14 and 005 would be stored at 25):
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Main program
address instruction

---T--- processing
60
61
62
63
64

65

75
76
77
78

179
622
176
623
807

675

nml
1

m2n2

Subroutine
address instruction

07 403
- store multi- 08 621

plicands in 09 199
subroutine 10 620

- branch to 11 123
subroutine 12 724

- first instruc-13 623
tion executed 14 319
following 15 121
return from 16 222
subroutine 17 621

18 811,
19 121
20 000)
21 000
22
23 (n)
24 001

save return

multiply, etc.

place result in
AC and return

scratch areas

Fig. 17 (c)

Main program

Coding for in x n program as a subroutine

Subroutine

new load

nu mbe r t
for -.'"

o

----

\

address instruction addres s instruction

50 . load
51 instruction

17552
614 C

and
53 625 _check
54 . 8ert ")*.A / \
75 . 005
76 16011

08
09
10
11

12
13 -,
14

199
627
060
061
062
063

"160

save return branch

load instruc-
tion set by
main program

15 725
16 310
17 726

N 18 320
19 810

\20 560
21 561
22 562
23 563
24 \810
25 005 constant changed

by main program
26 001
27 000 return branch

Fig. 17 (d) Coding for Selective Service call-up
program as a subroutine
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6-digit precision addition as a subroutine: In most realistic applications,
the 3-digit maximum number size of our machine would clearly be inadequate.
The capacity to handle 10 or more digits is desirable, and possible, but quite
complicated. We will demonstrate the process which is necessary by writing
a program to do 6-digit addition, making use of the concept of subroutining just
introduced. A 6-digit number is assumed to be two consecutive 3-digit numbers
with both having the same sign. The main program stores the two 6-digit num-
bers to be added into locations 27-30 in the subroutine and then branches to the
subroutine. The subroutine performs the addition by first adding the last 3 digits
of each 6-digit number. If overflow occurs, 001 is added to the first 3 digits of
the first number; then the first 3 digits of the second are added. The 6-digit re-
sult (i.e., the two 3-digit results) is placed in locations 31 -32 by the subroutine,
which then returns to the main program. To encode the occurrence of overflow
on the final addition, we will set the AC to 001; otherwise we set it to 000.

PROGRAM

STORE Al AND A2
INTO SUBROUTINE
AT CI AND C2,
STORE BI AND B2_
INTO SUBROUTINE
AT Di AND D2.

1
[BRANCH TO SUB,-1

ROUTINE

'RETURN FROM
SUBROUTINE

SUBROUTINE

'START

SAVBERARNETCHURN

(C2 + D2 E21

IC
I

+ D
I

E
I

000 -0,AC

BRANCH'
RETURN

Fig. 18 (a) Macro flowchart for 6-digit-precision addition subroutine
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I START 1

1
199 -SAC
AC -.RI

4

i4
RETURN

Fig. 18 (b) Micro flowchart for 6-digit-precision addition subroutine
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Address Code

10 199
11 623

13
14

230
632

12812

15 127

20

18
17

19
631

918
726
226
229

16

25 823

22
800

24

403
924

23
126

21

26 001

29

000
28 000

000
30 000

27

31 000)
32 000 )

save return

C2 + D2 -->E
2

C
1
>AC

overflom, compensation

C
1

+ D1--> E
1

set AC to zero or
one and return

constant

two 6-digit numbers

6-digit result

Note. Assume that the two 6-digit
numbers are already stored into
locations 27 through 30 by the
program.

Fig. 18 (c) Coding for 6-digit-precision addition subroutine

13. Billiard Table Simulation

The following problem again illustrates instruction modification. It also il-
lustrates how computer programs may be set up to simulate (i.e., to make a
model of) real situations. Let us construct a simplified model of the path of a
ball on a billiard table (Fig. 19 (c)). The ball is projected at 45° from lower
left-hand corner of the table, which is 11 units wide and 15 units long. We will
assume that the ball travels back and forth across the table, always rebounding
at 45 from each edge. This program determines the position of the ball on the
table at the end of a specified time.

With horizontal and vertical directions represented by the coordinates x and
y, the position of the ball at a particular time is defined by the values of x and y.
What are the values of x and y at the end of, say, 50 intervals of time?

Let us follow the path of the ball in terms of x and y, starting at 0. At the
end of the first time interval, x = 1 and y = 1. At the end of the second interval,
x = 2 and y = 2. Thus, in each interval we add 1 to x and 1 to y.

At the end of 11 intervals x = 11 and y = 11: the ball strikes the edge of the
table and rebounds. The ball now begins to travel back across the table in a

A-6.39



www.manaraa.com

LENGTH =15

STARTING
POINT --0 WIDTH = II

Fig. 19 (a) Idealized journey of a ball on a billiard table. Ball is projected at
45 0 from the lower left corner. Circles and associated numbers
denote time intervals.

direction that makes x smaller (y continues to increase as before). Later (when
y = 15) the ball strikes, and rebounds from, the top of the table. Thereafter,
the ball's direction is such that both x and y decrease with the passage of time.

We must program the computer to detect when x becomes equa:'. to the width
of the table and then to modify an instruction to subtract 1 from the value of x in-
stead of adding: When y becomes equal to the length of the table, the computer
must then modify an instruction to subtract from the value of y instead of adding
to it. A flow chart for accomplishing this billiard table calculation is shown in
Fig. 19 (b).

We first read in the table length (15 units), the width (11 units) and the total
time (50 intervals), and we initialiie x, y and the interval counter to 0. We set
two instructions, A and B (shown toward the bottom of the flow chart) to "add 1".
These are the instructions that are modifiable to "subtract" as the values of x
and/or y require.

Looking at the flow chart, let us see what happens when x = 5 and y = 5.
A test of x at the first test point shows that x is greater than 0. We therefore
by-pass the instruction modification and go to the second test point, which shows
that x is less than the width. Therefore we again by-pass to a similar pair of
tests for y, which discloses that y is also greater than 0 and that it is less than
the length. Thus, the two instructions A and B add 1 to x and y, respectively.

Next let us examine the situation where x = 11 and y = 11 - the first point
of rebound from a table edge. Now, the first test point shows that x is again
greater than 0, so we again take the by-pass to the second test point. Here, since
x is now equal to the width, we do not by-pass the instruction modification, and
thus change the instruction at A so that it "subtracts '" from x. Testing the y-
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I START

READ IN LENGTH,
WIDTH AND TIME

INITIALIZE x,y AND
COUNT TO ZERO

[STORE THE INSTRUCTION "ADD
AT A AND B BELOW

CHANGE INSTRUCTION AT A
TO "ADD ONE"

CHANGE INSTRUCTION ATAI
TO "SUB ONE"

CHANGE INSTRUCTION AT B
TO "ADD ONE"

CHANGE INSTRUCTION AT B
TO "SUB ONE"

A: ADD (OR SUBTRACT) I
TO (OR FROM) x

B ADD (OR SUBTRACT) I
TO ( OR FROM) y

ADD I TO COUNT

I

PUNCH x AND Y

Fig. 19 (b) Flowchart for billiard table simulation
A-6.41
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Address Word Comment
05 0 49 Read in length
06 0 50 Read in width
07 0 51 Read in time
08 403'
09 6 52
10 6 531 Initialize x, y and count to 0
11 6 54
12 1 55 Get the instruction "ADD ONE",
13 6 36 store it at address 36, and also
14 6 39 store it at address 39.
15 403
16 7 521

Create 0 - x and
17 3 20 test it; if 0 < x go to address 20.
18 1 55 If 0 > x, get instruction "ADD ONE" and
19 6 36 store it at address 36.
20
21

1 521
7 50.1 Create x-width and

22 3 25 test it; if x < width go to address 25.
23 1 56 If x > width, get instruction "SUB ONE" and
24 6 36 store t at address 36.
25
26

4 031
753i Create 0 - r and

27 3 30 test it; if 0 < r go to address 30.
28 1 55 If 0 > r, get instruction "ADD ONE" and
29 6 39 store it at address 39.
30
31

1 531
7

Create r -length and
32 3 35 test it; if r < length go to address 35.
33 1 56 If r > length, get instruction "SUB ONE" and
34 6 39 store it at address 39.
35 1 52 Get x and

(A) 36 0 00 eiTher add or subtract 1 from it, and
37 g 32 store the result as the new value of x.
38 1 53 Get L and

(B) 39 0 00 either add or subtract 1 from it, and
40 6 53 store the result as the new value of r.
41 1

42 2 00 Add 1 to count
43 6 54
-14 7 51 Subtract time from count and
45 3 15 test it; i-f count < time go back to address 15.
46 5 52 If count > time, print out the value of x
47 5 53 aria7f-i,
48 9 00 and halt.
49 0 00 (length)
50 5 55 (width)
51 0 00 (time)
52 5 05 (x)
53 000 (E)
54 0 00 (count)
55 2 Oo (instruction "ADD ONE")
56 7 00 (instruction "SUB ONE")

Fig. 19 (c) A program for billiard table simulation
A-6.42
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value, vie find that no instruction modification is necessary, and that y is incre-
mented by one.

Continuing to follow the ball's upward journey, we reach the top edge where
the ball's rebound causes x and y to enter a pliase in which both coordinates de-
crease. Thus, step by step, we make the flow chart picture the ball's journey.
In Fig. 19 (c) we show the problem coded as a computer program.

In this program we note that instruction 36 (A) covering x and 39 (B) cover-
ing y cause the computer to add 1 to the values of x and y in the following way. In-
struction at address 12, namely, the word 200. Instruction at address 13, name-
ly, word 636, copies into address 36 the contents of the accumulator, namely,
the word 200. Instruction at address 14, namely word 639, copies into address
39 the contents of the accumulator namely the word 200.

Now the word 200 says to add to the accumulator the contents of address 00.
And in our computer the contents of address 00 is 001. Thus we add 1 to the
accumulator contents, that is, to x or y.

In contrast if the operation calls for "subtract 1", instruction 23, namely
word 156, brings to the accumulator the word 700, which calls for "subtract 1".
This modified instruction is now copied into the addresses 36 and 39 which pre-
viously called for "add 1".

The foregoing program can be varied in many ways to match different con-
ditions. For example, it may be varied to follow a ball shot from the lower right
corner, or to take into account the effect of "english" on the ball's path and recoil
pattern, or the energy-sapping effects of friction. Since these physical factors
are represented by numerical quantities in the memory, we can make the computer
"model" or "simulate" as many possible physical conditions as we please. And
since a computer can speedily execute the instructions, computer simulation pro-
grams can be made to represent a speeded-up, advance-view of a real world situa-
tion before it happens. Such high-speed, advance simulations - made possible in
part by stored programs and modifiable instructions - are indispensable in space
flight experiments.

Suppose, for instance, that the space coordinates of the orbital motion of a
space capsule are computed by rapidly solving equations in an appropriate com-
puter program. If the computation proceeds quickly enough the computer will
know where the capsule will be long before it actually gets there. Computation
which proceeds this rapidly is called real-time computation, although perhaps a

ibetter name would be "in time" computation. Computation n real time is im-
portant in a variety of applications, such as the guidance of interplanetary probes
and the diagnosis of disease. (Can you think of other applications in which real
time computation would be vital?)
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Problems
Relative difficulty of questions found in Chapter A-4:

EASY MODERATE DIFFICULT

* 1 * 4 11, 12 * 8
* 2 5 14,15 10
* 3 7 13

6 9

*Key Problems to be completed by all students.

1. What single machine code instruction would you write
in order to have the computer do each of the following?
(a) Read the top input card and put its contents into
address (memory location) 34.
(b) Add to the accumulator a copy of the contents in
address 52.
(c) Clear the accumulator and bring to the accumulator
a copy of the contents in address 95.
(d) Jump to the instruction given at address 24.
(e) Copy the contents of the accumulator into address 42.
(f) Substract from the contents of the accumulator a
copy of the contents in address 33.
(g) Shift the contents of the accumulator first one place
to the left and then two places to the right.
(h) Halt and reset the instruction counter to instruction
at address 00.
(i) Test the contents of the accumulator. If the contents
are negative go to the instruction at address 13.
(j) Print onto an output card the contents at address 19.

2. What is the meaning of each of the following instructions written in
machine code? Write out the meaning of each in a complete English
sentence?
(a) 042

(b) 403

(c) 171

(d) 410
(e) 672
(f) 819

(g) 713

(h) 215

(i) 341

(j) 516
(k) 900
(1) 309

A-6. 44
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3. If the top input card has the number 473 printed on it, and the second
card has the number 052, what will each of the following programs do

with these two numbers? (Assume that the top instruction is executed
first.)

Memory
Address

Word
Stored

56 063
57 064
58 163
59 264
60 664
61 564
62 900
63
64 mmersmil

(a)

Memory
Addres s

Word
Stored

28 036
29 136
30 036
31 736
32 736
33 636
34 536
35 900
36

(b)

4. The following program is one that might be used to find out if a number
A is larger than another B or not. The top input card contains A, the
second input card contains B. The answer "yes" is printed out as 001,
the answer "no" is printed out as 000.

(a) How many tests are required to determine if A > B or not? Why?

(b) if the anestion was "is A > B or not", how could this program be
made shorter?
(c) If the result of the test at instruction 22 is positive what is the next
instruction?
(d) What does this program do if the number A is a negative number?

5. The contents of the accumulator are changing most of the time during

any calculation. These changes in the accumulator are important. In

each of the short programs below tell what is in the accumulator after

the execution of each instruction.

Memory
Address

Word
Stored

Contents of
Accumulator

.......
55 162
56 263
57 324
58 430
59 664
60 564
61 900
62 008
63 003
64 .

(a)

Memory
Address

Word
Stored

I Contents of
Accumulator

27 1,s4
28 735
29 735
30 326
31 636
32 536
33 M 900
34 329
35
36

127
MNIIIN

A-6.45
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6. Write as brief a program as you can (in machine code, starting at
address 53) which will find and print out the value of M-N where

M>N and M is positive.

7. Write a machine code program for finding the value of (M-5N). Start
your program with a flow chart.

8 Write a machine code program that will put any three numbers, A, B,
and C, copied from input cards in descending order.

9. Below you will find some parts of teal program. An arrow indicated
the instruction that is presently being executed. There are some
memory locations that are left blank; determine what should go into
each blank memory location and write what would be in the accumulator.
The arrow shows the initial instruction in each case.

,..........
Memory'
Location

Word
Stored

25 154
26 755. 27 656

.

.

54 329
55 312
56 017

Memory
Location

Word
Stored

.4

19 430
20 642

-421 141

.

.
41 937
42 ,

10. What does the following program do?

''11111111

Memory
Address

Stored
Word

21 0 36
22 1 36
23 4 20
24 6 38
25 1 36
26 4 12
27 410
28 6 37
29 136
30 4 02
31 2 37
32 2 38
33 6 36
34 5 36
35 8 21
36 MI ft a.

37 MII

38

A-6. 46

Memory
Location

Word
Stored

10 029
11 129
12 728

-...1,3 630

.

28 001
29 289
30 577
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11. Write a flow chart and corresponding machine program which will
examine an arbitrarily large set of numbers on input cards (a blank
card marks the end of the set) and which will print out only those cards
which have on them non-zero integers.

12. Write a flow chart and machine program which will print out only those
input cards which have on them odd (and positive) integers. (Suggestion:
By a '1422" instruction delete all but the right-most digits of the numbers.)
A blank card makes the end of the set of input integers.

13. A set of input cards (terminated by a blank card) contains numbers in
which the right-most two digits specify an address, YZ. The left-most
digit (X) is to be ignored in this problem. Write a machine program
which will print out the contents at these addresses in memory. (For
instance, if the input card reads 056, 156, 256, ..., 856 or 956 the
corresponding output card should print out the contents at address 56.)
This problem is most easily done by generating an instruction equivalent
to "5YZ" which is executed later in the program.

14. Analyze what the program given below does.

20 403
21 628
22 028
23 129
24 228
25 628
26 528
27 822
28 000
29 000

15. Analyze what the program given below does.

20 029
21 030
22 130
23 729
24 631
25 531
26 130
27 629
28 821
29 000
30 000
31 000

A -6.47
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Chapter B -1

DECISION MAKING
1. THE ELEMENTS OF DECISION-MAKING

You have just been given permission to drive the family car ,
but your father keeps the key to the locked gas cap, and tells
you that he will fill the tank on Friday night and you can have
the car all day Saturday, but drive slowly because the slower
you drive the better will be your gas mileage. You have a
single decision to make: drive slowly and get maximum
mileage or drive fast and get minimum mileage. Or is it
that simple?

A boy's father indicates that five dollars is sufficient to
spend for a Saturday football game and the dance which
follows, while his girl friend has been discussing plans
which if carried out will cost more than ten. Both indicate
that the decision is quite simple and that the answer is obvious.

The Board of Education of a school district asks the principal
of the local high schcol why they should not ban all student
cars from the school parking lot. At the same time the
Student Council asks the same principal why he will not allow
all students to drive to school. Both groups indicate that the
decision is really quite simple.

The "Committee for Clean Air" of a large city meets with the
mayor and demands that all incinerators ,ased for burning
garbage within the city limits be shut down immediately to
cut down air pollution. The mayor promises to discuss the
problem with his commissioners of traffic, sanitation rivers
and harbors, and report back to the committee. The committee
chairman snorts, 'Wore Bureacuracy, " and marches out of the
meeting to a press conference where he reports that the mayor
is stalling on a simple question which has a very simple answer.
The mayor in return replies, "For every complicated question
there is an answer which is forthright, simple, direct, and
wrong !"

One activity which is fundamental to the creation of the man-made world
(indeed, fundamental to all human activity) is the making of decisions. The
engineer basically is a decision-maker. The chemical engineer in designing a
petroleum-processing plant decides how many stages to use in the distillation
column, which products (100-octane gasoline, motor oil, kerosene, etc.) the
plant should manufacture, and the proportions of each product. The electrical
engineer, in designing a television receiver, decides what size picture. tube to
use, what picture- and sound-quality should be achieved, how many sets are to be
manufactured and the arrangement of the manufacturing facilities, to produce
these sets. In the design of a new building the civil engineer must decide whether
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to use steel girders or poured concrete, the extent to which internal columns
are permissible, and whether to construct a ten-story building with a given area
per floor or a five-story building with twice the area per floor.

In each of these cases, there are many decisions to be made--some insig-
nificant and others crucial. Each of these decisions is based on definite criteria.
In this chapter, we look at the nature of decision making and at some of the
techniques which can be used to arrive at intelligent decisions.

As an example, let us look, at the first "simple" situation
described at the beginning of this chapter. This situation
contains elements common to all decision-making processes.
The answer to the problem of an appropriate speed at which
to drive an automobile, while relatively simple, does not
become "drive slowly and get maximum mileage or drive fast
and get minimum mileage". We will examine the problem of
selecting an appropriate speed at which to drive an automobile
by looking at all the factors involved.

Figure 1 shows the relationship between automobile speed and gasoline
economy (the number of miles we travel per gallon of fuel consumed). At stand-
still, with the engine running, the efficiency is zero--no matter how much fuel
we use, the automobile doesn't get anywhere. As the speed increases, the

30
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0
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SPEED ( MILES PER HOUR )

Fig. 1 Gasoline economy as a function of automobile speed.

B -1. 2



www.manaraa.com

gasoline economy improves, until, at 45 miles per hour, it reaches a maximum
of twenty-two miles per gallon. Beyond 45 miles per hour, the economy falls
off, because of friction in the engine, in the wheel bearings, and in the air
through which the car moves, as well as because of a decrease of engine
efficiency at high speeds. It is obvious that the most economical operation of
this car, when travelling between two points, is realized when we drive at a
constant speed of 45 miles per hour.

It is rarely possible, in any realistic situation, to travel at a constant speed,
because of traffic conditions, curves, hills, etc. Fortunately, in this example,
small departures from 45 mph do not cause a serious problem. At all spet'is
between 35 and 55 mph, the gasoline economy is within 5% of the maximum. As
long as we stay reasonably close to 45 mph, we are operating at an essentially
optimum condition.

We base our decision to drive at 45 mph on our desire to maximize the gaso-
line economy (or, conversely, to minimize the cost of gasoline). In the real
world, decisions seldom are so easily made, because of the constraints imposed
by circumstance, as well as the conflicting criteria imposed upon the decision
maker.

If we were to drive through the center of a city, where the speed limit might
be set at 25 mph, the police would take a very unsympathetic attitude toward a
speed of 45 mph. Our decision-making becomes somewhat more complex because
of the imposition of this constraint. Its effect is shown in Fig. 2. The legally-

area
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Fig. 2 Imposition of speed-limit constraint.
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imposed constraint permits operation at any speed between zero and 25 mph.
If we wish to maintain maximum gasoline economy under this constraint, we
must operate at 25 mph, because this is the highest point on the curve of
economy versus speed within the region in which feasible solutions to our
problem exist.

If, on the other hand, we drive along a limited-access road such as the
New York Thruway or the Pennsylvania Turnpike, a different set of constraints
may be imposed. One such set is shown in Fig. 3. Here, we are not permitted
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Fig. 3 Constraints imposed on limited-access road.

100

to travel faster than 65 mph, nor slower than 50 mph. In this case, if our
criterion is gasoline economy, we must drive at 50 mph. We should note here
that, if our minimum- speed constraint had been 40 mph rather than 50 mph, the
decisior would have been to drive at 45 mph rather than at either constraining
limit, because the criterion for choice is maximum possible economy.

Frequently, we are required to make decisions on the basis of conflicting
criteria. In our limited-access-road example of Fig. 3, we may be required to
travel between two points in as short a time as possible (perhaps we have a date



www.manaraa.com

with a girl who becomes angry if we arrive late), and, in addition, we may wish
to use as little fuel as possible. We see, from Fig. 3, that we cannot simulta-
neously drive at maximum speed (within the speed-limit, of course) and maximum
economy. These are mutually-exclusive decision criteria. Such conflicts are
typical of engineering decision-making.

We may decide to drive at 50 mph for economy, and to risk the wrath of our
girl friend, or, if we don't wish to assume this risk, we may drive at 65 mph
and arrive on time to find a happy young lady.

As an alternative, we may compromise and choose some speed between 50
mph and 65 mph--perhaps 58 mph - -which will save us some money and permit
an arrival only slightly tardy. Such a choice between two conflicting criteria
actually involves the selection of a new criterion which seeks a partial satis-
faction of each of the original criteria. In this particular example, at 50 mph
the gasoline required is one gallon for every 21.5 miles, while at 60 mph we
realize only 20 miles on a gallon. The higher speed, however, requires less
time; this time saving may be more valuable to the driver than the extra cost of
the gasoline.

The degree to which each of the various criteria is satisfied is determined
by the decision maker. In other words, in the real world we are often confronted
by decisions in which the selection criterion involves a compromise choice
among several, conflicting goals.

This gasoline-economy example contains ali of the fundamental elements of
decision-making problems. Let us review these so that we may focus our
attention on them later. They are four in number.

(1) Model. The model is the mathematical or quantitative description of
the problem we are concerned with. In our example, we are interested in obtain-
ing the maximum gasoline economy; hence the model is the curve of Fig. 1,
which shows how gasoline economy depends on the speed which we are to select.
In subsequent chapters we consider the various forms of models in much greater
detail, since the model is the item which changes the problem from one of intu-
ition or common sense into a quantitative problem which we can hope to solve
precisely.

(2) Criteria. The decision problem also includes a criterion or set of
criteria which must be satisfied. If there is a set of conflicting criteria, there
must be some assignment of importance to each criterion - -i. e., a weighting
according to the importance of the several criteria. In our example, the
criteria were to achieve maximum gasoline economy and to arrive somewhere
in as short a time as possible, (31 some compromise between these. The civil
engineer must design a building which costs as little as possible, while simulta-
neously making it esthetically pleasing and strong enough to withstand the loads
to be expected. In most engineering cases, one criterion usually is financial
(either maximization of profit, as in a commercial organization, or minimization
of cost, as in government-equipment design).

(3) Constraints. The imposition of constraints, or the definition of the area
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of feasible solutions brings the problem, into the real world by imposing con-
ditions which must be satisfied if the solution is to be useful. In :our example,
specification of maximum and mil,imum speeds defines a region within which
we may look for a solution. Other constraints which may be imposed in our
example are unsafe road 2Dn±itions and driver fatigue (speed may be limited
by road conditions, and the m a involved in long trips may have to include
rest periods).

(4) Optimization. Once the problem is formulated (the model), we decide
what we really want (the criteria), and statements exist as to what is permissible
(the constraints), we are ready to attempt to find the best or optimum solution.
In our example, solution is possible merely by examination of the model and
consideration of the constraints. In more complex problems, it may be necessary
to find special engineering or mathematical techniques; in many practical cases,
we have to adopt a trial-and-error approach.

Thus, in this section we consider a very simple example of a decision
problem (the selection of the optimum speed at which to drive a car). In this
example, we find all four elements of the typical decision-making problem:

Model Constraints

Criteria Optimization

In the remainder of this chapter, we consider a small group of other decision
problems in order to illustrate the forms taken by each of these four elements,
and in order to present a broad picture of how modern technology attempts to
find solutions to problems of this nature. In these sections, attention is focussed
on different optimization techniques, with the examples illustrating incidentally
a few of the forms taken by the model, criteria, and constraints.

Problem: 1-1 The curve of Fig. 1 for gasoline economy versus speed is
rws,rn-ieavalid for this problem. We have rented a car from the No. 1 rental
agency and will have to pay a fixed 9 per mile for the distance travelled. We

wish to drive from the airport (where we have picked up the car) to a research
laboratory 80 miles distant. Half of the trip distance is on an expressway with
a minimum speed of 40 and a maximum of 70; the other 40 miles of the trip are
on a country road with a maximum speed of 45 and a minimum of 20. Since we
are stockholders of the No. 2 rental agency (who unfortunately have no cars
available at this airport today), we are anxious to maximize our fuel consump-
tion during the trip. How should we drive? How many more gallons of gas
shall we use by following this optimum schedule rather than following the schedule
which would bring us to our destination with minimum fuel consumption? How
many more gallons do we use than if we drove at maximum speed at all times?
How much longer is required for our 'bptimum" trip than for the shortest trip
(in other words, how much time do we have to waste to do maximum damage to
rental agency No. 1. ? ).

Let us look at the example of a complex problem referred to on page 1-1.
It is a problem for which we can produce .a descriptive model, one for which we
can set up criteria (mostly subjective) and for which many constraints will be
found. With all the necessary elements it would seem that an optimized solu-
tion would be merely a matter of vdorking at the mathematics as in the previous
problems. But life is not always that simple. The problem to which we refer

B -1 . 6
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is the urban system problem. In 100 years we have moved from a society in
which about eighty percent of the population Lved on farms to a society in which
sixty percent of the population lives in a metropolitan urban area.

The unusual aspect of the urban problem is that the system is so complex
that it makes our missile control system seem trivial.

The urban system is one with many input and output signals, a host of con-
straints (social, economic, and political) and a multi-dimensional, dynamic
mathematical model.

We can illustrate the complexity of the urban system by just a few thoughts
on the mundane problem of solid waste dispii)Val. In the United States we are
currently generating about four pounds of solid garbage per person per day. If
the eight million residents of New York City maintain this average, we need to
dispose of about 16, 000 tons of solid refuse each day within the city.

While the problems of New York City may seem unique because of the size
and population density of that area, it is estimated that by the year 2000 there
will be more than a dozen cities in the United States, each as large (in popula-
tion) as New York City is today.

At the present time, much of this garbage is burned in private and municipal
incinerators, thereby contributing in a major way to the air pollution problem.
Proposals to help the air pollution situation by forcing multiple dwellings to
package garbage for truck collection are discouraged by the fact that every avail-
able garbage truck in the United States would then be needed to transport the
material to locations sufficiently remote from the city--with the obvious impact
on the traffic flow problems of the city. Proposals to enforce stringent specifica-
tions on incinerators promise to raise rents and thereby encourage the further
exodus from the city of the already vanishing middle class. A proposal to trans-
port the solid rubbish on the subway system during the early morning hours
obviously requires major changes in the mass transportation system. Finally, a
proposal to give tax advantages to companies which package products in dissolv-
able containers clearly requires political and popular understanding of the nature
of the overall problem.

The above, very abbreviated discussion emphasizes the complexity of merely
le small facet of the problem of the urban environment. The urban system is

technologically complex primarily because of this interdependence of the various
sub-systems (including the models for the urban behavioral sciences, the urban
geography, and the urban history).

The Difficulties of the System Problem

In very recent years, there have been several major attempts to apply
system engineering to social and urban problems. The four studies commissioned
from the aerospace industry by ex-Governor Brown of California are perhaps the
most publicized of these efforts. Both New York City and New York State have
subsequently attempted to develop further along these lines, and specific studies
are contemplated or underway in most other cities around the country. Through-
out meetings of mayors and federal agencies runs the question of what technology

B-1.7
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can offer to the urban community. In these attempts, at least three factors
seem to represent major blocks to progress.

The first difficulty is the obvious one of communication between the tech-
nologist and the political leader. Most city leaders tend to be fully occupied
with day-by-day crises under a government organization originally developed in
a4ime of small population and relatively simple problems; the major studies
required for effective action never progress beyond the initial, conception stage- -
except possibly in a city department (e. g., traffic or air pollution) where it is
not possible tau ..onsider the full impact of a change on the total urban environ-
ment. The communication problem is severely complicated by over-zealous
technologists, who feel that major progress can be effected by single steps
which all too often duplicate work already done by other groups. If our past ex-
perience with other complex system problems is any guide, progress in an urban
community can only be achieved if responsible government leaders are able to
work with a responsible technological and social science group over a period of
several years.

The second problem impeding progress is the extreme difficulty of adequate
modelling. Modern system engineering starts with the determination and evalua-
tion of at least approximate models of the existing system and the selection of
appropriate performance criteria.' In most of our desired models for urban
problems, the basic data do not exist or, at least, are not readily available. For
example, in New York City it is difficult to obtain detailed data on the population
density: the average for the city is about 85, 000 per square mile (incidentally far
below the density of Rome in 100 A.D., which 7as over 200, 000 in spite of the
absence of high-rise buildings), but system planning required detailed two-di-
mensional data not only on density, but as well on the living habits, ethnic and
ee-acational backgrounds, and so forth.

In other areas, data are equally difficult to determine. The current admin-
istration in New York City has made major attempts to reverse the out-flow of
small businesses (particularly those employing labor forces which are not highly
skilled). In many cases, the reasons for businesses emigrating in the past are
not well documented. Construction of an appropriate model requires evaluation
of the effects of water and electricity rates, the influences of wage scales and
union-management relations, and the interdependencies with the quality of the
public transportation system (e. g., if a factory can expect one hour per day
additional work from employees by moving from the city, the labor force can be
reduced by 14 ).

The third significant impediment to progress is the difficulty of defining ex-
perimentation on the urban environment. Science and engineering progress
through controlled experiments; new automatic control techniques are evolved
by experimentation to measure process characteristics, experiments to attempt
control of process simulations, and final3y experimental development of the final
system. Analysis and theory are used to suggest and interpret the experiments.

In the urban problem, however, it is difficult to determine what constitutes
a meaningful experiment. The model-cities program of the federal government
will (if the program is sufficiently innovative) indicate certain system character-
istics, although it is not clear how the results for a new city of 100, 000 can be

B -1.8
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extrapolated to an existing city of a million or more. Even in the model cities,
however, significant experiments require a receptiveness of the developer and
the government to attempt major modifications in the Eystem.

In an existing city, the problem of how to experiment at reasonable cost is
of even greater difficulty. In New York City (as an example), a significant
transportation-system experiment would be a one-year abolition of fares on the
Long Island Railroad, which serves about 200, 000 commuters daily. Such an
experiment (costing perhaps $300 million, with the essential increase in park-
ing facilities at stations and expansion in railroad service) would yield useful
evaluations of the transportation and traffic problems only if it were coupled
with extensive studies in urban behavioral science.

Such an experiment might well eventually result in a lower cost to the State
and City, particularly if it were combined with dynamically scheduled busses
running from the railroad terminals and management of the tolls collected from
private automobiles entering the city from the region served by the railroad.
Clearly, however, the magnitude of such an experiment is beyond the scope of
our past thinking on urban problems; initiation of such an experiment would
require a monumental effort in the political and social arenas. Yet it is difficult
to envision major improvements in the urban environment resulting from experi-
ments of smaller magnitude.

The preceding description outlines a series of problems in which you might
well be involved sometime in the future. For the present let us look at a series
of problems which can be solved in a reasonable time.

2. ALGORITHMS

Throughout the remainder of this chapter, we discuss a series of decision-
making problems and attempt to find optimal solutions. As these examples
illustrate, in most cases the optimum solution is not obvious merely by inspection
of the problem (as it is in the simple example of Sec. 1). Rather, we often must
seek a logical, step-by-step procedure to move toward the answer,

Such a list of instructions for a sequence of operations which leads to the
answers of all problems of a particular type is called an algorithm. *

Example

In order to illustrate what is meant by the above definition, we consider
first one of the best known algorithms - the 'Euclidian algorithm for finding the
greatest common divisor of two positive integers. (This particular example is
not related to optimization, but we use it to emphasize the character of an
algorithm. )

The greatest common divisor of two positive integers is the largest number
which will divide into each with no remainder. For example, if the two positive

*The name algorithm is derived from a Uzbek mathematician, al-Khowarizma,
who developed such sets of rules in the ninth century. (The Uzbek Soviet Socialist
Republic is a portion of the Soviet Union north of Afghanistan).
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integers are 6 and 9, the greatest common divisor is 3 (i. e. , we could divide
both 6 and 9 by 3 to reduce 6/9 to 2/3).

Before stating the general method of s'lution (the algorithm), we consider
the particular example of the two integers, 1740 and 2436. What is the largest
number which divides evenly into both of these integers? In order to answer this
question, we form a vertical column, with the larger integer listed first:

2436

1740

The next entry is the remainder when 1740 is divided into 2436:
1

2436 1740 12436
1740 1740
696 696

We now proceed with the last two number (1740 and 696) exactly as we did with
the original two. The next entry is the remainder when 696 is divided into 1740:

2
2436 696
1740 1392
696 348
348 2

348 r 696
696

0
When 348 is divided into 696, the remainder is zero, so we stop the column;
the last entry (348) is the greatest common divisor of 2436 and 1740 (indeed,
2436 = 348 x 7 and 1740 = 348 x 5).

The algorithm for all problems of this type then is described as follows.
Step (1) Make the two given numbers the first two entries in a column with the
first entry greater than or equal to the second.

Step (2) As the next entry in the column, insert the remainder when the number
above is divided into the number one place higher.

Step (3) Repeat step (2) until the remainder obtained is zero.

Step (4) The greatest common divisor is the last column entry before the zero.

Several comments on the algorithm are important. First, the procedure
must work for any given pair of positive integers; for this reason (we might be
given two equal integers), the phrase "or equal to" must be included in step (1).
Second, the form used above for the algorithm is by no means the only possible
statement. Since division is accomplished by repeated subtraction, it is possible
to phrase the algorithm purely in terms of a sequence of subtractions (as in-
dicated in the problem at the end of this section). Finally, the algorithm is
essentially a form of computer program for the solution: a sequence of steps
which can not be misinterpreted and which leads logically to the problem answer.

B-1. 10
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A second example

In the example which follows this one, we wish to solve a problem of rout-
ing a police car through the city streets. Before considering that problem,
however, we describe first a simpler version, which happens also to be a
famous problem historically. In 1736, Euler* considered the question of whether
it was possible to walk once across each of the seven bridges over the Pregel
River in Kbnigsberg, Germany (i.e., to walk over all bridges without crossing
any bridge twice). One could start at any desired point and end up at any point.

A crude map of KOnigsberg is shown in Fig. 4. There is an island (marked
region C), two sides B and D of the main river, and a region A between the two
sections of the river after it divides.

Fig. 4 Seven bridges of KOnigsberg

The solution of the problem is obvious if we draw a graph as a model for
the actual problem (Fig. 5). In this graph, each vertex represents a region
(A, B, C, or D) and the lines represent the bridges. Travel over a bridge once
is represented by one traversal of a line in the graph.

B

A

D

C
Fig. 5 Graph as a model of Fig. 4

*The most famous of Swiss mathematicians, who published an enormous number
of articles on all phases of mathematics and physics.

B71.11
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Thus, Fig. 5 is simply another way of showing the seven bridges (with each line
in the graph indicating one bridge).

We now wish to determire what property this graph must have if we can
indeed travel over each bridge once and only once. Let us suppose there is
such a path. If it starts from vertex A, we might go first to vertex B. We
would enter B on one line and leave on another line. Thus, each time we pass
throuh a vertex, there must be exactl two lines connected to that vertex.

After the total path is drawn, we can say: every vertex has an even number
of lines connected to it. The only possible exceptions are the vertex from which
we start and the vertex at which we end (e. g. , if we start at A and go to B and so
on, we leave A along one line; thereafter, we may pass through A again and two
lines to A are added). *

Thus, a closed path covering all bridges is possible only if:

(1) Every vertex has an even number of lines (then we start and end
up at the same point), or

(2) Exactly two vertices have an odd number of lines (then we start
at one of these and end up at the other).

Inspection of Fig. 5 reveals that the vertices have the following numbers
of lines:

A 3 C 5

B 3 D 3

All four numbers are odd; hence there is no hope of solving the KOnigsberg
bridge problem.

If one additional bridge were built (or we were permitted to swim across a
river once), as in Fig. 6, the problem could be solved (and Euler also showed
this part of the solution). Now only vertices B and D are odd (as shown by the
numbers in the figure); hence we can start from B, traverse all bridges, and
end up at D.

B (3)

A(4)

D(3)

C(6)
Fig. 6 Konigsberg with one additional bridge.

*If we start and end anywhere between vertices, every vertex must possess an
even number of lines.

B -1.12
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While the present case is so simple we can see a solution by inspection,
we really want an algorithm which works in all cases. Euler's solution is as
follows:

(1) Follow any path from B to D (e.g., BAD).

(2) Redraw the graph and omit the path already traced (Fig. 7).
A

/A
/. %%/ %./ %\//

e//

Fig. 7 Graph redrawnwith original path omitted.

D

(3) From any vertex along this omitted (BAD) path, trace a closed loop
(e. g. , BCB).

(4) Redraw the graph and omit this loop of (3) (pg 8).
A

Fig. 8 Graph redrawn with first loop omitted.

(5) Continue this process until all the original graph has been covered
(e.g., we might next trace the ACDCA loop).

(6) A solution now consists of the following steps. We start at B. We first
follow all loops out of B (in our example, BCB only in Step 3 above). We then
travel along the original path (BAD) to the next vertex (A). Here we stop to trace
out all loops starting from A (the loop ACDCA in Step 5 above). We then proceed
to the next vertex on the main path, and continue this process until the entire
diagram is covered and we have reached the terminal point. At each stage, we
can redraw the graph as indicated in the above example, in order to keep track
of the positions which have been traversed.
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In other words, our solution says we should travel in the sequence
B C B ACDCA D

First loop SeconcT. loop

in order to cross all eight bridges with no retracing of steps

Thus, for this example we have essentially derived two algorithms: one
for determination of whether a solution is possible, and the second for determina-
tion of a route to be followed.

Problem 2 -1: Test the steps of the algorithm which can be used to solve any
problem in the above category. We can assume we start with a graph as a model
for the system; what the solution desires is either a statement that the problem is
not solvable or a systematic procedure for determination of a path which
traverses every line once and only once.

Routing police cars

A town precinct covers the grid of streets shown in Fig. 9. A police car
starts at A, and we wish to route this car so that all streets will be patrolled

Fig. 9 Precinct streets

once, preferably in a minimum time (so that the second patrolling can be started
as soon as possible).* In order to determine a desirable route for the car, we
can apply directly the methods of the preceding example; for this case, every

*Covering the precinct in minimum time is obviously achieved if we can find a
route which covers each block once only. If this is not possible (as in this
problem), the route must retrace as few blocks as possible (or select those
blocks in which travel time is minimum).
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intersection (marked by a letter in Fig. 9) is a vertex.

Ideally, we should like to start from A, traverse all streets once, and end
up at A. Inspection of the figure reveals that this is impossible because the
following vertices have an odd number of lines:

B 3 K 5

G 5 P 3

In order to permit a path from A back to A and throu&a all streets, we must
add paths which change these odd numbers to even (aid leave the others even).
In other words, we can make a total closed path possible by inserting an extra
path from P to B and from G to K (meaning that the car will traverse the P-B
and K- G blocks twice during the patrol). This change is shown in Fig. 10.

Fig. 10 Street map with added paths from
P to B, K to G (corresponding to two

traversals of. these two blocks).

Once this change in the diagram is made, the route-selection algorithm of
the preceding example can be used to determine an appropriate route for the
patrol car.

Two comments are important in this particular example:

(1) In a more complex problem, there may be numerous widely separated
vertices with an odd, number of lines. In such a case, there are many different
ways to insert extra lines (retracing of certain streets) to make all vertices
even. If we wish a patrol requiring minimum time, we must evaluate the extra
time required for each of these possible retracings.
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(2) We normally wish to vary the patrol pattern of the police car (so that
the patrol car does not pass a particular point at regular intervals of time).
This variation can be achieved if we find different solutions from the route-
selection algorithm.

Problem 2-2 For the system of Fig. 10 with the lines from P-B and K-G added,
determine an optimum path on the basis of the route- selection algorithm. Start
with the A-to-A path made up of

ABODEFGHIJKLMNOA
and then add loops from the diagram remaining after this path is deleted. If
each block requires one minute for traversal, what is the minimum time for a
complete patrol? How much time is saved compared to the common back-and-
forth patrol represented by the path

AONQP0ABPBCDAHEDHIONMINMLKMIKJIHJKGJH
GEFGHA.
(For evaluation of the time required here, the original street diagram of Fig. 9
should be used since this drawing represents the actual problem).

Problem 2-3 The algorithm for the determination of the greatest common
divisor of two positive integers can be rephrased in terms of subtraction rather
than division. To go from entries 1 and 2 in the column to entry 3, we used the
remainder resulting from division of 2 into 1. Alternatively, we can subtract
entry 2 from 1; if the result is less than entry 2, we use it as entry 3; if it is
greater than entry 2, the difference becomes entry 2 and the previous entry 2
becomes 3. The process is now repeated with entries 2 and 3, etc., until the
difference obtained is zero. The last preceding entry is the desired answer.
Show that this subtraction algorithm works when we start with 1740 ,and 2436.
Compare the effort involved in the two forms of the algorithm when the original
integers are 42 and 9.

Problem 2-4 As a final example of an algorithm, we consider the following
game. There are 27 matches on a table and two players, A and B. The players
alternately pick up and retain 1, 2, 3, or 4 matches. Each player knows how
many matches the other has at all times. The winner is the player who has an
even number of matches at the end of the game. A desirable algorthm for A
consists of the following steps:

(1) On the first move, A picks up 2 matches.

(2) At each move thereafter, A proceeds as follows:

(a) If B has an even number: divide number of matches still on the
table by 6 and find the remainder of this division. Take one less than the
remainder.

(b) If B has an odd number: take one more than the remainder unless
the remainder is 4, in which case take four (as soon as there are 1 or 3 matches
on the table, A should take them all).
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Take several examples and show that A wins by this strategy. As an example,
let B take successively 1, 3, 3, 1, 2, and 1 at his turns. This example of an
algorithm demonstrates that (just as in a computer program) there may be
alternate paths which we have to follow to obtain a solution. In this case,
the strategy to be used by player A depends on whether player B has an odd or
an even number of matches.

3. CRITERION

In Sec. 1, the four elements of the decision-making problem are listed as

Model Constraints

Criterion Optimization

In the preceding section, we discuss the optimization part, particularly when
it is possible to find an algorithm or logical, complete procedure to a solution.
In this section, we consider (via another example) the element or factor called
the criterion .

In many decision problems, the choice of criterion is far from obvious.
Probably the most significant decision made by most men throughout their lives
is the selection of a wife. In this case, if one were rational and logical, he
might attempt to formulate the problem in the following way:

(1) Model: quantitative description of the characteristics of different girls
(appearance, beauty, intelligence, personality, character, aesthetic preferences,
sense of values, attitude toward marriage, etc.).

(2) Criterion: the relative values given to each of the above characteristics
by the young man.

(3) Constraints: represented by the limited number of girls who would
accept a proposal (if this number is precisely one, the decision problem simply
reduces to the question of whether to marry at all).

(4) Optimization: selection of the girl to maximize the criterion subject
to the constraints.

While this particular problem perhaps best illustrates the fact that most
decision-making in life is carried out intuitively and on the basis of poorly
defined criteria, it is also clear that the two critical parts of an optimization
problem are the model and the criterionparticularly the latter. While two
young men might agree fairly well on the model (the different characteristics
to be included and the relative quantitative ratings of particular girls), they
would probably disagree strongly on the relative importance of these various
characteristics. The criterion would vary markedly from one young man to the
next. *

'MT is is, of courses e7-Tn.most fortunate; otherwise every man woul want to marry
the same type of girl.
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In a much simpler example (simpler because we can all agree on the
statement of the criterion), we can illustrate another aspect of the criterion:
the fact that we often have to change the criterion as the problem is being
solved. In many cases, we discover that no solution can be found unless the
criterion is simplified; in other problems, we can sharpen up the criterion as
we move toward a solution. The latter situation is illustrated in the following
example.

Figure 11 shows a model of a system of corridors in a building. There are
three corridors: one from a to b, one from a to c, and one from b to c. These
three corridors connect the points a, b, and c. During the time in which we are
interested (e.g., the time during class a
changes in a school), the flow of people
is from a to b in that corridor; hence,
it is not convenient to try to walk from
b toward a. We show this property by
placing an arrow from a toward b.

C

Fig. 11 A set of corridors
The corridor from a to c is similarly essentially one-way from a to c,

however, the corridor is wide, and we can move rapidly in either direction
(this situation is represented by a double line connecting a and c, with an arrow
in each direction). Thus, Fig. 11 represents the convenient pattern of travel
throughout the system of corridors.

Now we turn to a statement of the problem we wish to consider in this
section. Our task is to station one or more men at the intersections (a, b,
and c) in Fig. 11 in such a way that every intersection is covered by a man at
most one "block" away. In other words, we might use three men: one at a, one
at b, and one at c; each man would then be responsible for monitoring his inter-
section.

Alternatively, we might place a man at b. He is able to cover both b and c,
since he can travel to c rapidly in case he is needed there (there is a one-way
path from b to c directly). Our man at b cannot, however, monitor intersection
a: to reach a, he would have to travel two "blocks", from b to c and then from
c to a. Hence, if we place one man at b, we must place another man at either
a or c to cover intersection a.

The problem is where to locate the men in order to minimize the number
required. The system of Fig. 11 is so simple that we can see by inspection that
one man stationed at a could cover all three intersections (a, b, and c). If our
only purpose is to solve this single problem, we are now finished. If is not
difficult, however, to visualize a much more complicated pattern of corridors in
which the answer is not obvious. In the hope of being able to solve such problems,
we consider this simple example and look for an algorithm which works for all
problems of this type.

The algorithm

We must station our men to""cover" or monitor each intersection. We

B-1.18
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first consider intersection a. This can be covered by a man stationed at a or at
c. Hence, we represent coverage of a by the expression

( a + c )

Similarly, intersection b can be covered by a man at a or at b, represented
by

( a + b )

Now to cover both intersection a and intersection b, we can represent the
stationing of men by the product

(a + c) (a + b) = a2 + ab + ca + cb
coverage coverage

of a of b

The first term, a2, means a rran at a covers both intersections; the second
term, ab, means the man at a covers a, the man at b covers b; ca means the
man at c covers a, at a covers b; and cb means the man at c covers a, at b
covers b. In other words, the product

(a+c) (a+b)
represents all possible ways of covering intersections a and b.

To cover all three intersections, we consider

( a + c) (a + b) (a + b + c)
Coverage Coverage Coverage of

of a of b

If we multiply out this product, we find one term (a3) involving only one letter.
In other words, there is just one location (a) at which we can place a man who
can cover all three of the intersections.
A more complex example

The problem of Fig. 11 is, as we noted, too simple really to indicate the
power of this method. In order to consider a more interesting case, we turn to
the corridor arrangement shown in Fig. 12, with six intersections -- a, b, c,d,

Fig. 12 Corridor map

B-1.19
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e, and f. Because of the history of activity in this system, we desire to place
men in such a way as to cover the key intersections a, b, c, and d. (Inter-
sections e and f are of f>econdary importance and can be less accessible to
monitoring).

Obviously a suitable disposition of men is to station one at each of the four
intersections. In order to decrease the number of men required, however, we
desire to provide the required coverage with a minimum number of. men.

The statement of the problem is now complete, and we can turn to the solu-
tion. We must "cover", in the sense used above, each of the fou-. intersections:
a, b, c, and d. Inspection of Fig. 12 reveals that intersection a can be covered

mby a man stationed at intersection a or d, intersection b can be covered by
a man stationed at b or c or e or f, and so on. If our short-hand description of
the problem is expanded to cover the four essential intersections, we obtain the
following expression for the stationing of men:

(a + d) (b + c + e + f) (a c + f ) (a +b + d)
To cover To cover To cover To cover

a
After multiplication of this, we obtain 72 terms (2x4x3x3), each of which
represents a suitable location of men to provide the required coverage.

In this horrendous product, typical terms are, for example,

dcab a2bc a2b2

The term, dcab, means a man at d, one at c, one at a, and one at b. The term
a2bc means three men at a, b, and c, with the man at a covering two inter-
sections. Since there are terms with only two letters, we can provide the re-
quired coverage with two men only; we can forget about all terms in the product
with more than two letters.

The product can then be written**
(a-111)(b+c+e+f)(a+c+f)(a+b+d)=a b+a c+a3f+a3e+a2b2 +c2d2+a2c2+a2f24.d2f2+

with more than two letters.

*A few of the terms are identical, so there are slightly less than 72 different
possibilities.

**These terms can be written without the tedium of writing out all 72 terms.
Each product term contains one element from each factor; we merely look for
combinations involving two letters only. For example, a appears in the first,
third, and fourth term. Hence a3 goes with any element in the second term.
If we were to follow the occasional pattern of textbook authors, at this point we
would leave the listing of all 72 factors as "an exercise for the student." The
dominant characteristic of applied science and engineering is, however, that
it is fun; hence we attempt to find those terms we need merely by inspection of
the product.
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We have now nine solutions to our original problem, nine different ways to
station two men to provide the coverage required. The meaning of the terms
is illustrated by the following two specific examples:

a3 b The man at a covers three intersections, that at b covers one;

c2d2 The man at c covers two intersections, that a d covers two .

The existence of nine equally valid solutions is an unexpected delight. In
practice, however, we must choose one of these. Apparently we did not ask
for enough in the original choice of a criterion. Instead of just asking for the
minimum number of men, we can add additional criteria (i.e., we can change
our original criterion).

0
For example, we might require that each man be responsible for only two

intersections. In other words, we ask for as even a division of the work load as
feasible. In our example, this added criterion rules out the terms a3(b+c+f+e)
above, and leaves us with only the five possible solutions:

a2 b2
+ c2d2 + a2 c2

+ a2 f2
+ d2 f2

Even with five equivalent solutions we are unusually wealthy and we can
add another criterion. We ask that each man be responsible for the intersection
at which he is stationed plus one other (in order to minimize his travel time).
This condition rules out a2f2 and d2f2, since in both cases the man at f is
responsible for intersections b and c. We then have three possible solutions:

a2b2 + c2d2
+ a2c2

Finally, we might select one of these three merely on the basis of the
probable location of crime or possibly the personal desires of the man involved.

General comments

The interesting part of this problem is the gradual evolution of the criterion
during the process of solution. We started off with the simple criterion of
minimizing the number of men. We found that we could add additional parts to
the criterion: evening of work load, minimizing required travel, and finally
catering to personal preferences.

In most optimization problems, the difficulty of finding a solution requires
that the criterion initially be chosen as simple as possible. Once solutions are
found, additional criteria can be used to select among these.

The entire question of what constitutes a satisfactory criterion underlies a
large part of optimization work and decision-making. The continuing debate in
the United States throughout the 1960's on the need for new weapon systems
(for example, anti-missile missiles) stems from different criteria of evaluation.
The proponents of a new system weightheavily the military tactical and strategic
advantages; the opponents frequently tend to place major weight on the economic
needs of the country for urban rehabilitation (for example). The difficulty of
decision arises because of the constraints imposed by the need to limit govern-
ment spending in order to control the national economic picture. When radically

airo
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different criteria are used in the decision-making process, it is not at all
surprising that grossly different decisions are reached.

In this section, we attempt to emphasize the key role played by the criterion
in the typical decision problem. Of our four parts,

Model Constraints

Criterion Optimization

the model represents the system with which we are working, the constraints
represent the limitations imposed on the permissible solutions, the criterion
represents a statement of system objectives, and the optimization is the
algorithm yielding a solution. In applied science, as well as in the realm of
personal decisions, the criterion is that element of the problem which is most
difficult to describe precisely.

4. THE SEARCH FOR ALGORITHMS

Throughout the first three sections of this chapter, a series of optimization
examples are discussed:

The selection of a car speed to maximize gas economy

The rousing of police patrol cars to minimize time required

The stationing of men to minimize the number needed to cover
a set of intersections and corridors.

Although these case studies have been included to emphasize the different parts
of a decision or optimization problem,we should like to be able to begin to
develop an understanding of the method of solution of such problems. After all,
once these problems are phrased (model, criterion, and constraints listed), they
are mathematical problems, and one of the most attractive features of mathern.a-
tics is that general rules can be developed for the solution of an entire class of
problems.

For example, one class of mathematical problems is concerned with deter-
mination of the average of two different numbers a and b. The average is simply
the sum divided by the number of terms, or in the case of only two given
quantities

average a +b
=

The average height of the boys in a group can be found by adding all heights and
dividing by the number of boys. Thus, for finding the average of a set of
numbers, we have a straightforward algorithm or set of steps to follow.

Is there an algorithm (or at least a small number of algorithms) which
suffices to determine the solution of decision or optimization problems?

Unfortunately, the answer is no.
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There are, of course, algorithms and approaches which are useful for a
group or class of optimization problems. The remaining chapters of this text
consider a few of the more important methods of solution; in the rest of this
chapter and the next we focus exclusively on these methods. The fascination
of applied science and engineering lies, however, in the challenge provided to
us as we search through our arsenal of mathematical techniques for methods
which are useful in the particular problem under consideration.°

Thus, it is not useful to attempt to list different categories of optimization
problems and then to write beside each the appropriate mathematical approach.
While this inability to classify problems in a clean and neat list is unfortunate
for the individual meeting the subject for the first time, it does add to the ex-
citement of the field. Hardly anyone feels much of a thrill when he calculates

a +b
2

The solution of our stationing problem in the last section is exalting: when we
started, we really didn't know what form the solution would take or even if it
would be possible to find a solution with less than four men. In this sort of
mathematics and applied science, suspense is a common element.

A second feature of optimization problems is that common sense (or intu-
ition) often is not very much help. Simple mathematical "illusions" are as
common as optical illusions, and one is often deceived by common sense. In the
most familiar example of such a mathematical illusion, an honest coin is tossed
repeatedly, with a sequence of heads and tails. As soon as four heads in a row
come up, the tossing pauses while bets are placed on the single, next toss. Most
people would prefer to bet on a tail, and occasionally we can even find an
"educated" individual who will give us favorable odds if we allow him to bet on a
tail coming up next. Actually, the probability of a head coming up in the next
toss is exactly 1/2, since preceding tosses are irrelevant, past history.

The examples of such breakdowns of common sense are legion. As another
example, we consider a system in which a series of men check their hats as
they enter a-restaurant. Unfortunately, the checkroom attendant is hopelessly
unintelligent and simply gives each man, as he leaves, a hat selected at random
from her collection. What is the probability that no man receives his own hat?

The interesting feature of this problem is not the particular answer, but
two aspects of the answer:

(1) The probability of no one receiving his own hat is essentially the same
if there are 8, 80, 800, or 8000 men. Once the number exceeds 8, the actual
number is largely immaterial (37% of the time this experiment is tried, no one
receives his own hat).

*Incidentally, the author was not sure either as he started to write that section.
He knew only that the approach described there was often useful. If the problem
had not worked out successfully, he would have had to select a different corridor
map and start again.
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(2) The probability is higher for an even number than for either adjacent
odd number. In other words, the event is more likely to occur with four men
than with either three or five, more likely with six than with five or seven.

Both these results are rather startling and counter to the intuition of most
people.

This same feature frequently characterizes optimization problems. It is
for precisely this reason that a logical, algorithmic solution is often most
desirable. In order to illustrate this feature, we consider one final example
in this section.

Stockton's famous story, The Lady and the Tiger, describes the plight of a
common man in love with a princess. The king discovers the romance of his
daughter and condemns the man to open either of two doors in the arena.
Behind one door is a tiger who will devour the man; behind the other door is the
loveliest maiden in the land whom the common man will marry if he opens that
door. The princess discovers which door conceals the tiger and which the
maiden. As her lover stands in the arena making his decision, the princess
points to the right-hand door.

The man is then confronted with a decision: should he follow the suggestion
of the princess or not? Has she pointed to the tiger (to prevent him from marry-
ing the maiden) or to the maiden (to save his life)?

In order to make an optimum decision, the man must assign some appropri-
ate,numerical values to the different outcomes. For example, he might decide
being eaten by the tiger has a value -10 (the actual number is not particularly
significant, but the value is certainly negative since this is a highly undesirable
outcome). If he opens the door for the tiger, it makes no difference whether the
princess lied or not.

If he opens the door to the maiden, however, the value to him depends on
whether the princess lied. If she lied (and was trying to kill him), he will be
extremely happy with the maiden; if she told the truth (and was anxious to save
his life), he will be much less happily married to the maiden while he realizes
the depth of the princess' love. We might assign +20 and +10 to these two out-
comes, respectively. *

Actually, the problem we have phrased is termed in mathematics a game
played between two sides, the man and the princess. It is described by TET
table shown below:

*The actual numbers here must, of course, be determined by the man as he
stands before the two doors and mentally solves this optimization problem.
Since he is playing this "game, " he alone can decide on the relative value of
different outcomes. We are merely guessing his thoughts (in the actual story,
the author does not indicate the outcome).
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The princess has two possible strategies: she can point to the lady or to the
tiger. The man likewise has two options: to select the door to which the princess
points or to choose the other door.

If we assume the princess is trying to kill the man and the man wants to
maximize his return, we can solve this problem (although we shall not discuss
the details of solution here). The best strateg,) for the man to follow is for him
to select the door to which the princess is pointing 3/5 of the time. Since he is
only going to play the game once, he should make a random decision, with 3/5
probability of the door to which the princess points. One easy way to do this is
to look at the second hand of his watch as he approaches the doors. If this hand
points anywhere between 0 and 36 seconds, he selects the door indicated by the
princess. If the hand is between 36 and 60, he opens the other door. This
strategy maximizes his expected benefit from the game.

The interesting feature of this optimization problem is that the man should
favor the move which promises him a smaller payoff (or gain): 60% of the time
he is playing in such a way he can win only +10; the other 40% he plays when he
can win +20. His optimum strategy is counter to that which he might well follow
by intuition.

The details of this particular example are not important for the basic ob-
jectives of this chapter. The example is included only as an illustration of the
common failure of intuition in optimization problemsand the importance of an
algorithmic solution. The example, itself, is certainly open to argument: e.g.,
why did we select +10 and +20 for our positive values in the table? Fortunately,
the actual numbers chosen are not very important; we obtain very nearly the
same answer if we use +5 and +10, or +20 and +40.

*We continue to call this a game because of the mathematical acceptance of that
term. For our young man, it is obviously a game of life and death. We might
formulate a similar gambling game. The two strategies could be the holding
forth of one or two fingers simultaneously by the two players; the numbers in the
table then show the dollar payoff to A after each play. If this game is played,
repeatedly, A can expect to win an average of $2 each play, and he should select
one finger 60% of the time, two 40% chosen at random. Similarly, the same sort
of game arises in military tactics (e. g., the deployment of opposing forces).

B-1.25



www.manaraa.com

While this section emphasizes that there is no possibility of establishing a
list of strict rules to follow in solving optimization problems (and each type of
problem must be considered from an understanding of the system), we do wish
to consider, in this and the following chapter, a few basic types of problems
for which we can discuss systematic solution methods. In the next section, we
consider problems with a reasonably small number of alternatives; in the last
section of this chapter, we consider problems solvable by a method called
dynamic programming.

5. OPTIMIZATION WITH FEW ALTERNATIVES

When optimization involves only the choice of one from a few alternatives,
the selection can often be made by a straightforward comparison of the criterion
function evaluated for each possibility. In this section we consider two examples
of such an approach, the first involving only two alternatives and the second re-
quiring a selection from among a manageably small set.

Choice from two alternatives

If only two feasible designs or plans are found, selection of the better of
the two is usually simple if a quantitative performance criterion is agreed upon
by those responsible for the evaluation of the design.

A simple route-planning problem illustrates this class of problems. We
consider the situation shown in Fig. 13. Bill is late for a date with Jean.
He is anxious to drive from his house to Jean's house in the minimum time. By
rural rcad, which is 6 miles long, he can average 30 miles per hour. Driving
over a winding feeder road, he can reach a parkway on which he is permitted to
drive at the rate of 60 miles per hour; he then takes another feed road to Jean's
house. He can drive at 30 mph on the feeder roads which are each one mile long.
The parkway section is six miles long, so the total route is 6 + 2 = 8 miles, as
compared to the six miles for the rural road. Which road should Bill take?

Fig. 13 A route planning program.
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The rural route can be driven in 6/30 = 1/5 hour, or in 12 minutes. On
the other route, the two-mile trip along the feeder road can be completed in
2/30 = 1/15 hour, or 4 minutes, and the 6 miles of parkway require 6/60 = 1/10
hour, or 6 minutes: a total of 10 minutes. Thus the longer route is two
minutes shorter in time. Bill should take the parkway route because he is late
and must use the faster route. If he were not late, he might choose the rural
road because it requires less gasoline, or because he enjoys the scenery.
Clearly the selected route depends on the performance criterion that is used.

The problem above may seem rather unexciting: one can hardly care very
much about a time difference of a few minutes. Obviously, however, the
numbers can be selected so that the difference is more significant. Further-
more, if we are interested in dispatching fire equipment from a station house
to a fire, the saving of a few minutes by optimum routing may be of critical
import slices

The type of analysis involved in this problem is also useful in designing an
improved urban transportation system. One of the astonisnitig features of traffic
systems in our cities today is the poor information which they communicate to
the driver. For example, the motorist driving toward the center of the city from
the suburbs typically passes several points at which he can take alternative
roads. These are the places at which clearly visible si.ens should indicate the
current travel time to the city center along parallel routes so that he could make
a reasonable choice. Instead, he normally has no help at all in the decision
process (except possibly for a radio reporter in a helicopter who is giving very
qualitative and general impressions of the overall traffic situation). While major
expressways in some city areas cost $20, 000, 000 per mile or more, the trivial
expense of installing sensors to measure traffic flow and communication equip-
ment to inform the motorist is neglected altogether.

Choice from a few alter_iatives

If a small number of feasible designs or plans is available, it is possible to
study each plan carefully and to select that plan which is best. This is some-
times referred to as "the brute force approach". To illustrate this method, we
consider a very common replacement problem: namely, when should one
"trade-in" his car to reduce the average operating cost per year to a minimum?

The problem may be simplified by considering trade-ins only after 1, 2,
3, years of use. We must also estimate the cost of operation of the car for
each year of use. This cost must include the cost of fuel, oil, tires, batteries,
maintenance, insurance, registration fees, taxes, and probable repair. The
cost of operation depends on the number of miles the car is to be driven each
year, since this use determines depreciation, repairs, and so forth.

In the table below we list the data (columns 2 and 3) and the computations
(columns 4 to 7) necessary to answer our question. In column 1 we list the age
of the car, and in column 2 the corresponding estimate of the sale value of the car.*

*The car is assumed to depreciate only 00 during the first year. The actual
value depends on the make of car, the market for second-hand cars, the mileage
driven, and the quality of the care given to the car.
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Column 3 lists estimates of the operating expense for each year from the year
of purchase.*

Year
(1)

Sale
Value

(2)

Oper.
Cost
(3)

Depreci-
ation

(4)

Cumtz
Oper.
Cost (5)

Total
Cost
(6)

Av. Cost
Per Year

(7)

0 $3000 - - - - -

1 2400 $ 800 $ 600 $ 800 $ 1400 $1400

2 1920 850 1080 1650 2730 1365

3 1540 900 1460 2550 4010 1337

4 1230 950 1770 3500 5270 1318

5 980 1000 2020 4500 6520 1304

6 740 1050 2260 5550 7810 1302(---SE
7 520 1100 2480 6650 9130 1304

8 320 1150 2680 7800 10480 1310

9 150 1200 2850 9000 11850 1317

10 50 1250 2950 I 10250 13200 1320

LL

Column 4 is the depreciation, which represents the initial cost ($3000) minus
the sale value in column 2. Column 5 is the cumulative 2eiwAiri cost, which
is simply the total of the operating costs in column 2 up to and including the
present year. Column 6 is the total cost which is the sum of the depreciation
and the cumulative operating cost (sum of columns 4 and 5). The last column
is the aNLeraf22costzeLy year, which is simply the total cost divided by the
number of years (this is the cost per year if we trade in after 1,2,3, years).

The minimum average operating cost per year is apparent from the last
column. We select that figure which is minimum here. Hence, the best operat-
ing cost per year is achieved if we trade-in after six years. It is important to
note that this minimum is very "flat"; it costs only $35 per year more (about
3% more) to trade in the car after the third year. If the factors of reliability of
operation or of status which results from driving a late model car are given
consideration, the car should be traded-in before the sixth year (remember that
performance criteria are expressions of subjective evaluations !)

The conclusion that has been reached is, of course, no better than the
estimates that have been made of the sale value and of the operating costs. The

*The operating costs listed here are low and imply the car is driven only about
10,000 miles per year. They do increase slightly as the years go by because of
more repairs and poorer performance.
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collection of the necessary data, upon which realistic estimates can be made,
represents the major difficulty in the solution of this problem. Furthermore,
the solution of the problem does not take into account at all the probable future
changes in the price of cars and the cost of operation or the changing value of
the dollar to the owner of the car. As an extreme illustration of this latter
factor, if severe runaway inflation should occur (as in Germany in the 1920's)
money becomes worthless, costs rise at uncontrolled rates, and any economic
analysis is worthless days after it is made. Even a slight inflationary trend,
however, can modify markedly the optimum trade-in-time.

The two examples described above are among the simplest cases of opti-
mization. In both cases, once a model is constructed (the data are collected),
determination of the optimum is a straightforward matter. In the next section,
we consider a moire complex problem in which there are so many possibilities
they cannot all be enumerated and evaluated one-by-one.

Problem 5.1 One of the obstacles to an optimization solution is that it is
based on data which are often open to suspicion. In the above problem, for ex-
ample, we can only guess at the operating costs in the future or even at the
mileage driven per year. If the car is demolished in an accident not covered by
insurance, operating costs may soar and sale value plummet. We always need
to investigate at least the effects of slight changes in data in order to be sure
that the data are not too critical (if they are very critical, our solution is valid
only if we make very accurate measurements of the important data).

As an example, solve the above problem again, with the operating cost each
year doubled (corresponding to driving 25,000 miles /year rather than the 10, 000
on which the table above is based). Because of this additional mileage, the sale
value is reduced to the sequence of numbers 3000, 2000, 1620, 1240, 930, 780,
540, 320, 200, 100, 20.

6. A MORE COMPLEX ROUTE-PLANNING PROBLEM

When there is a very large number of possible designs which must be
analyzed to find the optimum, a direct approach is tedious, time- consuming, and
frequently impractical. In such circumstances, we seek an algorithm which
reduces radically the number of computations - - an algorithm which permits step-
by- step elimination of some of the alternatives until an optimum can be deter-
mined.

In this section, we consider one such example--a particular type of problem
in which an idea called dynamic programming permits simple solution of a
complex decision problem.

A power company, lOcated at A in Fig. 14, plans the installation of a feeder
line to serve a new factory, located at B. Streets have to be torn up and trenches
dug for the new line. Some streets are paved with asphalt, others with concrete;
the number of buried gas and telephone lines varies from street to street. On
streets with heavy traffic, extra guards must be hired to direct traffic. The
costs for the installation of the feeder line in any particular block are given by
the numbers indicated in Fig. 14, from a minimum of $3, 000 to a maximum of
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$12, 000 (costs indicated in the figure are in thousands of dollars). It is required
to determine the route which involves a minimum cost from the power station at
A to the factory at B.

This problem can be solved by calculating the costs for all possible routes
from A to B and then selecting the route with the minimum cost. In order to
learn how difficult the problem is, we examine the number of possible routes
from A to B, with the assumption that any feasible route will proceed either to
the north or to the east (in other words, no route moves south or west, and we
always move toward the ultimate destination at B). A simple procedure exists
for computing the number of possible routes.

In Fig. 15 the point marked ® represents the goal to which a path must be
selected from position X. Instead of considering X immediately, however, we
first consider the two points E and N (east and north of X). If we want to move
to® from position E, there are 6 different paths by which the goal can be
reached. These are shown in the diagram, and we can trace them through the
streets,heading east and north at all times. If, on the other hand, we move to
B from position N, only 4 different paths exist through the streets.

If our starting point is a position X, we can reach goal®by moving to N
with its four possible paths or by moving to E with its six available paths. From
point X we may therefore select any one of 10 possible path., to reach goal®.

Using this principle, we may proceed in a step-by-step fashion to deter-
mine the maximum number of paths. First, we note that from any of the inter-
sections on the north edge of the grid, there is only one possible route to10--
due east. From an intersection on the eastern edge, one can only proceed due
north to get to ®. We place the number 1 at each of these boundary intersections
on Fig. 16. We must now remember that only movements north or east are per-
mitted. From Fig. 16, we next find that the possible routes from the inter-
section C to® are therefore (1 + 1) = 2, which produces Fig. 17. From Fig. 17
we find, in turn, that the number of routes from intersection D to 0 is 1 + 2 = 3
and from intersection E to ® is 2 + 1 = 3. The pattern is clear; starting from
intersection C we move step-by-step to the left and down until each intersection
is enumerated. The square (Fig. 18) now shows that there are 20 possible routes
from 0 to 0 .*
*If we removed our assumption that the routes proceed from A to B always to
the north or to the east, there would be any number of possible paths (since we
could loop around a square block any number of times).
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Fig. 17 A step in calculating number of routes.
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Fig. 18 Completed square giving number of routes
from intersection to O.

If this calculation is repeated' for square grids with a larger number of
blocks, the following table of values is determined:

No. blocks on a side 3 4 5 6

No. possible routes 20 70 252 924

20

137, 846, 528, 820

The power company would be faced with a gigantic task if it were to calculate
the costs for all possible routes from to B for a grid 20 blocks in each
direction. Clearly, some method of reducing the enormous number of possibilities
to a more manageable number is needed!

The Solution The -solution is available if we work from the terminal® back-
wards, rather than starting at e and enumerating all paths. In other words,
in Fig. 19, we first ask: if we are laying the pipeline and reach C, how do we
proceed optimall1 from here? We then repeat the question for I, which is also
one block from
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Fig. 19 The original problem with each
intersection labelled.
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The answers to both these questions are obvious. From C we must go
east and the cost is 10; from I, north is the only allowable path and the cost is
11. We indicate these two optima on Fig. 20.

C-010
10

Fig. 20 Optimum paths from C and I.

Next we consider how to move if we are at intersection H. Here we can go
north to C; from C we know east is the optimum. Hence north from H brings us
to ® with a total cost of 7 + 10 = 17. East from H takes us to I at a cost of 7,
then on to at a cost of 11--a total cost of 18. Hence, if we are at H we should
move north and the cost to ® is 17 (Fig. 21).

I-1

10

7 11

t17 7

Fig. 21 Optimum path from H

Now we turn to the next set of intersections away from(); the intersections
at D, G, L, K, and J in Fig. 19. D and J are simple, since there is no choice
(Fig. 22). G is calculated next: going north yields a total cost of 3 + 18 = 21;

D 18 8 -C.10
10 °C)

3
9

(0
8

L

7

ti7 7

K

12

II
11

t I
9
t20
J

Fig. 22 Optimum paths from D and J
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heading east yields 9 + 17 = 26 (frpm H we already know the minimum cost is
17). Hence the desired path from G is north at a cost of 21.

In the same way the path from K is calculated as north at a cost of 22.
Once K and G are fixed, L 1$ calculated and we obtain the data of Fig. 23.

D.18 C 10 10

Fig.
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We next consider the intersections E, P, F, 0, M, N, and A. This process
finally leads to the minimum cost values for every corner, shown in. Fig. 24.
The process also shows at each corner whether to travel north or east by arrow-
heads drawn upon the preferred path.
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Fig. 24 Minimum-cost values for the
entire problem grid

B.1.34

9

t
20

7

.t27



www.manaraa.com

Thus, Fig. 22 is the solution of the original problem: the determination
of the minimum-cost path from A to B. The total cost of this optimum path is
$44, 000.

Comments on the solution. The total grid possesses (as we saw at the beginning
of this section) 20 possible paths from A to B. Instead of evaluating these 20
costs, one-by-one, we look at the problem as a set of binary (two-choice)
decisions. There are nine of these in the total grid--at the intersections H, G,
K, L, F, 0, M, N, and in Fig. 24. Thus, solution of the problem requires
only the comparison of nine pairs of numbers: these are, at each of these inter-
sections, the costs if we go north or east. *

The saving in effort by the solution algorithm is dramatized more vividly
in the case of a 20 x 20 grid. For such a problem, there are 137, 846, 528, 820
possible paths. With the algorithm, we need compare only 20 x 20 = 400 pairs
of numbers. If we can carry out four comparisons per minute, the algorithmic
solution takes less than two hours. If four path costs could be evaluated per
minute (a rather high rate in a 20 x 20 problem), consideration of all possible
paths would require over 65, 000 years of continuous work. The algorithm
converts an unsolvable problem to a solvable one.

Because a variety of optimization problems can be solved in the same way
as the above example, it is useful to reconsider briefly what steps are involved
in the solution above. We are faced with a problem in which there is a large
number of alternatives. We essentially try to find a way of looking at the
problem as a sequence of simple decisions, rather than one complicated decision
We can realize this sequency by working from the termination 0 back toward
the origin .

As an example, we can consider the intersection L in Fig. 24. Before con-
sidering L, we have already determined the minimum-cost paths from G to B
and from K to B (Fig. 25). If we are at L, we have only two choices: north to
G or east to K. If we go north to G, we thereafter follow the already-determined,
minimum-cost path to B (cost 21). Thus, from L the cost is 31 if we head north,
30 if we head east--we obviously should move eastward.

The key to success here is the fact that, once we determine the minimum-
cost path from G to B, these are the path to follow and the cost regardless of
how we reach G.** Recognition of this fact is what simplifies the decision at L.

*Actually, as in so many problems, more time is required to read a description
of the solution than to carry it out. A problem such as Fig. 24, once the method
of solution is understood, should require only a few minutes.

**In the literature on dynamic programming (name for the algorithm used in
this example), this key idea'is given the fancy name, the principle of optimality.
The principle says that once an optimum path is determined from any interior
pcnt to the termination, this is the path to be followed regardless of how the
interior point is reached.
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The algorithm we have discussed, known as a "dynamic programming" al-
gorithm, has taken on great importance with the advent of modern digital com-
puters. In dynamic programming we replace the need for the simultaneous
selection of a large number of variable factors by the process of selecting one
variable at a time, starting with the end result, and working back to the starting
condition. Dynamic programming is an important algorithm for the determination
of the solution of a problem in optimization of a plan. Even with the fastest com-
puter, one would not lightly consider the computation of the costs for the gigantic
number of cases demanded by a "calculate all paths" process. With the dynamic
programming algorithm, the calculation of a 20-block problem would also con-
sume considerable amounts of time. But with a digital computer, this algorithm
would require a few seconds of computer time and would be a practical method
of solution.

Optimiiation problems that can be solved with dynamic programming
algorithms occur in a wide variety of contexts. Airlines take advantage of the
wind direction on the different legs of the transatlantic routes to determine
minimum-time or minimum-fuel routes. Other examples are found in problems
dealing with inventory control in warehouses, in the programming of expansions
of telephone switching centers, and in the automatic control of industrial
factories and chemical plants.

7. CONCLUSION

The basic objective of this chapter is the introduction of the elements of
decision problems:

Model Constraints

Criterion Optimization.

In order to emphasize these four aspects, several examples are described and
solved--examples ranging from rather obvious and trivial exercises to the
dynamic programming problem of the preceding section.

Optimization (or decision) problems have two fundamental characteristics.
First, such problems constitute a focal element of modern technology and of
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business management, economics, social sciences, and other fields. Much of
our personal and public lives is determined by significant decisions which con-
front us as individuals or our government or institutions (including business)
in the establishment of public policies.

Second, because of the wide range of forms, optimization problems
possess no straightforward method of solution. One must first understand the
problem thoroughly, then seek an appropriate algorithm. In the last example
(the dynamic programming problem), one can justifiably accuse us of resorting
to a "trick" to find a solution. The idea of working from the termination back-
wards is certainly not obvious to most people.

If such problems can only be solved by tricks, how can the subject be
taught or learned? As scientists, we should prefer to avoid such problems and
concentrate our energies instead on problems in which systematic methods of
solution can be written. As engineers or individuals interested in the impact of
modern technology on the lives of everyone, we cannot disregard such problems;
optimization decisions arise in the most interesting parts of modern technology:
automation of medical diagnosis (e. g., automatic reading of eiectrocardiagrams),
traffic control and transportation problems, efficient utilization of police and
fire department personnel and equipment, business decisions, and so forth.

Because of the importance of this topic of optimization, the next chapter is
devoted to a presentation of a very few algorithms which are useful in an
important class of problems.
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PROBLEMS

1.1 The following information represents the grades (to nearest
students on an examination.
(a) Make a graphic model of the data on

the right.
(b) If the performance criterion is that

80% of the students should pass, what
would be the passing grade for this
test?

(c) If we are using this test to help us
select students for an honor class and
school policy (a constraint) allows a
maximum of only 10% of the students to
be admitted to honor classes, what is the
(optimum) passing grade for honor students?

1.2 (Discussion problem). Write an algorithm for some school activity which
you would like simplified. (E.g., how to keep records of lateness, cutting
of classes, etc.) Keep in mind the four elements of decision-making.

10%) of 300

Number of
students

Test
grade

10 20%
10 30
20 40
20 50
30 60
90 70
90 80
30 90

1.3 General managers of baseball teams have the difficult job of making trades
to improve their teams. In the spring of 1967 the Anaheim Angels traded a
twenty-game-winning pitcher to the Minnesota Twins for a hard-hitting first
baseman and an outfielder. There was much discussion about the deal. Put
yourself in the position of the general manager of each team and cite the
reasons (the criteria) for the decision to trade. (The players mentioned
were Dean Chance, Don Mincher and Jimmy Hall).

1.4 (Discussion problem). Cite an example where the solution to a problem
is counter to common sense.

1. 5 A simple "model" of the car trade-in problem is to assume that the sale value
of the car at the nth year is a fraction of the sale value at the (n-1) year; i.e.

vn = avn-1 where 0 < a < 1, (a = constant),
and to assume that the operating cost for the nth year is increased by a fixed
amount over the operating cost for the (n-1) year; i.e.

Cn = cn-1 + b (b = constant)
Use this "model" for the case where

v = $3000 (initial sale value)
a = 0.80 (depreciation factor)
c = $ 800 (operating cost for the first year)
b = $ 50 (increase in operating cost per year)

and determine the year to trade-in in order to minimize average operating
cost per year.
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1.6 In the four by four grid shown below, find the minimum-time path from
A to B going only north and east. There are 70 possible routes, but you
need to calculate only 24 numbers.
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1.7 An unscrupulous cab-driver who is paid by time rather than distance wants
to have the maximum time route from A to B in the previous problem, still
traveling only north or east (to avoid suspicion). Can you find it for him?

1.8 Many of the airlines flying the North Atlantic now use computers to find
minimum time jet flight paths taking into account the strong winds that
usually occur at jet cruising altitudes, and the restrictions on possible
routes imposed by air traffic control requirements. Savings on the order
of 15 minutes on the nominal 7 hour flight are obtained this way. A grid
of "check-points" is selected and all routes must consist of generally east-
west straight-line segments between check-points. A simplified version
of such a grid is shown below. Imagine that check-point A is New York and
M is London (or Paris if you prefer). Check-points B through L are points
in the ocean (located by giving their longitude and latitude). Using wind data
from "weather ships" on the North A4-10,ntic (they release balloons and track
them as they rise) and characteristics of the particular jet airplane the air-
line uses, the flight planner computes the time to fly each segment (results

A
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E
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for east to west flights differ, of course, from west to east flights). He
then has a "maze problem" very similar to the one treated in Section 6 to
find the route that requires minimum time. In practice there are many
more check-points that are shown in the figure below so that a computer
solution is essential. For the data given in the figure (time in minutes),
use the dynamic programming algorithm to find the minimum time route.
(There are 19 possible routes. )

1.9 The text examples of a shortest route problem used a very special street
pattern; namely, a square grid of streets. The technique developed for
solving that problem can also be used on other street patterns. In the illus-
tration shown below we have a pattern of streets and the time in minutes to
travel each block is shown. We wish to find the shortest route from corner
15 to corner 1 where on any block we may only travel towards the right;
e.g., we may travel from corner 7 to 6 but not from 6 to 7. Use exactly
the same algorithm to solve this problem as was used on the square grid
pattern.

1.10 Notice that in Problem 1.9 the route would have been 3 minutes shorter if the
last step (2, 1) had been replaced by (2, 3, 1). However, this route traverses
a block in a direction not permitted by the stated conditions. Suppose this
restriction is relaxed: how can we find the best route when we may traverse
a block in any direction? A method called relaxation can be used. We must
have, to begin with, a time estimate at each junction that is certainly long
enough (there must be room for optimization). At each intersection in turn,
beginning with those nearest the destination, see if this time estimate can be

B-1.40



www.manaraa.com

improved by taking any other, previously forbidden, route, and if so enter
in a chart the new estimate and the new direction. When the whole pattern
has been surveyed, transfer the new times and directions to the map. For
example, suppose we start with the final time estimates obtained in prob-
lem 1.9. The correction chart for the first few entries looks as follows:

junction old estimate arrow to 1st new estimate arrow to
2 8 1 5 3

3 2 1 2 1

4 11 2 11 2

5 10 2 10 2

After making this improvement successively at all the junctions, we repeat
the process again and again until no improvements can be made at any junc-
tion. We then have at each junction the minimum time to junction 1 and the
arrows indicate the route. In this example, on the second time around we
find that 4 and 5 have been revised to:

junction 1st new estimate arrow to 2nd new estimate arrow to
4

5

11

10

2

2

8

7

2

2

Complete this problem.



www.manaraa.com

Chapter B-2
OPTIMIZATION

1. INTRODUCTION

In our daily lives, we are often required to make decisions on the basis
of ill-defined or indefinable criteria. Some prefer rock-and-roll music, others
prefer jazz, and still others prefer symphonies. When we decide which auto-
mobile, refrigerator, pair of shoes, can of peas, or candy bar to buy, we make
the decision on the basis of criteria which we cannot define mathematically or
express in words. Such criteria are called subjective criteria, since their form
depends strongly upon the person (or subject) involved.

Engineers, too, are faced with the problem of arriving at decisions on
the basis of subjective criteria. Such decisions usually are made by the ex-
ercise of "engineering judgment," which is a combination of intuition and past
experience on the part of the engineer and of the company for which he works.
The individuality of engineering judgment clearly is evident when we look at the
relatively-wide differences among the several brands of automobiles available
within a particular price range, or at the various designs of refrigerators or
television sets on the market, or even at the significant design differences be-
tween American and Russian space vehicles. (Here, one might argue that these
differences exist because of the lead which Russia gained some years ago. But
within the U.S. space program, the U.S. Army and the U.S. Air Force, each,
had satellite systems which differed markedly, even though both had access to
the same technology).

Most engineering design activity currently relies on engineering judgment.
There are, however, certain classes of problems for which engineers are able
to define objective (i. e., mathematical) performance criteria. In such cases,
it frequently is possible to determine the optimum design using well-known mathe-
matical tools, by developing an appropriate algorithm (i.e., set of mathematical
rules), determining the design parameters, and then proceeding with the algorith-
mic solution -- usually with the assistance of a computer, either analog or digital.

Some areas where criteria can be stated in mathematical form, and algo-
rithms have been developed (and, hence, where the optimum choice may be made)
are:

(1) Allocation of limited materials. In a petroleum refinery, the crude
oil may be reduced to various combinations and proportions of a number of possi-
ble products (gasoline, kerosene, motor oil, etc.), and it is necessary to optimize
(i.e., maximize) the profit.*
* It is interesting to note here that such techniques are employed by a well-known
sausage-maker. His recipe for frankfurters includes a number of ingredients for
which the prices fluctuate widely from week to week. This manufacturer has de-
veloped a digital-computer program to determine the proportions of these ingre-
dients to use for the week's production in order to maximize his profit. He, of
course, imposes constraints on this solution to limit the amount of fat content
to some maximum value and to keep variations of flavor within bounds.
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(2) Route-planning problems. If a manufacturer of delicate instruments
in Buffalo, New York,wishes to ship some galvanometers to Omaha, Nebraska,
he may use trucks, railroads, airplanes, and Great-Lakes ships inNarious combi-
nations and over a variety of routes. He may choose the route with lowest cost,
or one that is most rapid, or one that will produce the least possible damage to
his meters, or one according to an entirely different criterion.

(3) Queueing problems. Another group of problems which can be treated
mathematically are queueing problems, which arise when it becomes necessary to
design facilities which will be fewer than the demand for their use on some occa-
sions, and greater than the demand for their use at other times -- as in the selec-
tion of the number of checkout counters in stores, telephone exchanges in a given
area, toll booths at a bridge entrance, and air traffic control towers along an air
route.

In the next three sections we discuss problems which involve simple in-
equalities (called "linear programming" problems). We start with a very simple
problem and then gradually consider more significant examples of such problems.
The second half of the chapter is devoted to a different algorithm and its appli-
cation and then to a brief discussion of queueing problems.

The purpose of the chapter, then, is to develop a few types of algorithms
useful in classes of important optimization problems. In the concluding section,
we attempt to summarize the major points of this and the preceding chapter --
the material devoted to the general question of optimum decision-making.

2. A PRODUCTION PLANNING PROBLEM

An ice cream plant can make two flavors, vanilla and chocolate. The
plant capacity is 1000 quarts per day, and the sales department says that it can
sell any amount of vanilla up to 800 quarts and any amount of chocolate up to 600
quarts. If the profit per quart is 104 for vanilla and 13 for chocolate, what is the
most profitable daily production?

Since the profit per quart is larger for the chocolate than for the vanilla,
we should produce as much chocolate as we can sell. This would set the produc-
tion of the plant at 600 quarts of chocolate. All excess production could then be
applied to the vanilla ice cream, to add to the profit. The daily production of the
plant is thus 600 quarts of chocolate and 400 quarts of vanilla -- not a very diffi-
cult problem.

We now solve this problem in a systematic manner, so that a technique can
be developed which can be extended to more complicated problems.

We derive the general method of solution by making use of mathematical
statements known as inequalities rather than equations. 'A statement of inequality
uses the symbol >. x > 20 states that x is greater than or equal to 20; while x >20
means simply that x is greater than 20. It should be observed that an inequality

*Similarly, x< 20 mean x is less than or equal to 20 (or, if we read from right
to left, 20 is greater than or equal to x).
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does not have a single value for its solution, but a range of values: for example,
x >20 can be satisfied by a value of x of 21 or 22.5 or 2000, etc.

In order to establish to describe our problem in terms of mathematics, we
let V = quarts of vanilla to be produced in one day and C = quarts of chocolate to
be produced in one day. For our problem, 1000 = total quarts produced by the
plant for one day.

The number of quarts of vanilla to be produced may not exceed 800, but
may be less than that quantity. We express this by two statements of inequality:

800 > V > 0

In other words, the vanilla ice cream produced may be any amount between 0 and
800 quarts. Similarly the quantity of chocolate ice cream to be produced can be
represented by:

600 > C > 0

The number of unknowns can be reduced from two to one by remembering
that the total production must be 1000 quarts of ice cream. With this limitation,
if V quarts of vanilla are produced, there can only be (1000-V) quarts of chocolate
ice cream.

Our statements of limitations for production are thus:
0 < V < 800

0 < (1000-- V) < 600
At this point, we have a model for the decision problem. The model, as

expressed by these two inequality relationships, states that there are several
constraints on the quantity of vanilla, V, produced each day:

V>0 (the amount of vanilla must be positive or zero, we can-
not have a negative amount of vanilla)

V<800 (we cannot sell more than 800 quarts of vanilla)

1000-V >0 (the amount of chocolate must be positive or zero)

1000-V < 600 (we cannot sell more than 600 quarts of chocolate)

These four inequalities (the model) can be expressed somewhat more under-
standably if we manipulate the third and fourth so that V appears alone on one side
of the inequality (as in the first two). For the third inequality above,

1000 - V> 0
means that V must be less than or equal to 1000. Hence this inequality is exactly
equivalent to

V < 1000
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(We can add V to both sides to obtain this relationship by direct manipulation).
In the fourth inequality,

1000 - V < 600

if we add V to both sides we obtain
1000 < 600+V

We now subtract 600 from both sides and obtain
> 400

Therefore, the model (the four inequalities above) can be written

> 0

< 800

< 1000

> 400

The second of these is evidently stronger than the third, the fourth stronger than
the first: i.e. if the second is satisfied, the third is automatically O.K. Hence,
the model can tae simplified to:

Model

V> 400

V< 800
Model

Now that the model is determined we can turn cur attention to the
criterion: what is to be optimized? In this problem, we wish to maximize the
profit. The problem statement specifies that the profit is 14 for each quart of
vanilla and 13 per quart of chocolate. Thus, if P is used to represent profit (in
cents) we can write

P 10V +13C

Once again, C is equal to 1000-V, and the criterion (profit) equation becomes
P = 10V +13 (1000-V)

P = 13000 - 3V1 Criterion (to be maximized)

Finally, we must consider the constraints before we start the optimization.
In this particular problem, there is no constraint specified ( a constraint might be
that the owner never permits production of less than 500 quarts of vanilla because

* We can add any number to both sides of an inequality; the number can be posi-
tive or negative, so we can also subtract any number from both sides. AlthougL.
we do not need the fact here, we can also multiply or divide both sides by any
positive (non-zero) number; if we multiply or divide by a negative number, the
direction of the inequality is reversed ( < becomes >, for example).
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of his personal desire to cater to his vanilla customers).

Solution. Now that the problem statement is complete we turn to the problem
of optimization. We must select V to satisfy the two inequalities of the model,
and simultaneously to maximize P. One approach (which is useful in more
complex problems) is to consider a graphical representation of the equation
P = 13000 - 3V: we plot P versus V as shown in Fig. 1 (the plot is made by sub-stituting two values of V, say 0 and 800, calculating the corresponding values ofP, 13000 and 10600, and then constructing the line through the two points).

On this graph, we introduce the model inequalities. The former statesthat V must be greater than or equal to 400; hence the line V = 400 separates the
permissible region (to the right of that line) from the inadmissible. The second
states we must select V to the left of the V = 800 line. Thus, the model requires
we select V in the region called the "Feasible region" in Fig. 1.

P

13000

H000

9000

V= 400 V=800

Feasible
region

oP plot, P= 13000 3V

400 800

DAILY VANILLA PRODUCTION
(Quarts)

Fig. 1 Pr.ofit versus amount of vanilla ice cream.

* One might argue, for example, that the factory limit of 1000 quarts/day of ice
cream is a constraint rather than a part of the model. In problems of the naturewe are discussing here, it makes no difference whether a given part of the pro-
blem statement is considered part of the model or a constraint (in this example,
we arbitrarily put everything into the model). The only important factor is to
include all significant aspects of the problem statement.
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Figure 1 shows clearly the solution of our problem. We wish to maxi-
mize the profit; hence, operation should occur at point A on the edge of the feas-
ible region. The figure shows that the smaller V,the larger the profit P; hence
point B corresponds to minimum profit and point A to the desired maximum profit.
From the figure, we can read at point A,

V = 400

The corresponding P can be read from the figure or, more accurately, can be
calculated from the equation for P:

P = 13000 - 3V = 13000 - 3 (400) = 11800 cents

One interesting feature of this graphical solution is that the best point
for operation occurs on the boundary of the feasible region. We see in the next
sections that this feature is a characteristic of problems of the type we are con-
sidering in this first half of the chapter.

3. A TRANSPORATION PLANNING PROBLEM*

In retrospect, we can only marvel at the last section. There we take a
ridiculously simple problem which can be solved by inspection and convert it
to a complicated problem requiring the definition of a model and criterion, the
manipulation of a set of inequalities, and a graphical solution. Clearly, it is
essential to justify this ruining of a perfectly obvious problem, and in this
section we turn to a more difficult problem in which we apply those techniques
so laboriously developed in the preceding section.

The preceding problem involves a search for a "best" solution to a problem
for which more than one solution is possible. The "best" solution is one which
achieves either a maximum or a minimum under the conditions or restraints that
are imposed. These restraints are expressed mathematically as either linear
equations or linear inequalities. Such problems have been named "linear pro-
gramming problems". **By a linear equation here, we mean each variable
(x or y) appears only to the first power. For example, 3x + 4y = 2 is a linear
equation. The term linear also refers to the fact the plot is a straight line. In
a similar fashion, a linear inequality is an inequality which becomes a linear
equation when the inequality sign is replaced by an equals sign.

It is fascinating to discover the variety of design and planning problems
that involve linear inequalities. In this section we treat a siriiple transportation
planning problem and solve it by drawing a graph similar to the one used in solv-
ing the production planning problem of the previous section.

*Example suggested by "Operations Research for Students of Business", notes by
James R. Jackson, published by University of California of Los Angeles.

**Our examples of linear programming problems in this chapter are all sufficiently
simple to permit manual solution. In practice, problems frequently involve a
large number of variables and must be solved with high-speed computers.
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A grain dealer owns 50,000 bushels of wheat in Grand Forks, North
Dakota, and 40, 000 bushels in Chicao. He has sold 20,000 bushels to a customer
in Denver, 36,000 bushels to a customer in Miami, and the remaining 34, 000
bushels to a customer in New York. He wishes to determine the minimum-cost

Grand Forks (50) 60 New York
x..,-- -- -.. ....../ Chicago(40)

needs 34

/ --- x\ 5151142 ..- "S \/ .0.-- 55 )1/4 47
Denver / --- 36

needs 20 X x Miami
needs 36

Fig. 2 Sources and needs of wheat and shipping costs
(numbers in thousands of bushels and in cents
per bushel)

shipping schedule, on the basis of the freight rates in cents per bushel shown in
Table 1. For example, it cost 42 per bushel :ror shipments from Grand Forks
to Denver. Different modes of shipment involve rates which are not proportional
to the distance between the cities.

----........._ 10
From ............... Denver Miami New York

Grand Forks 42 55 60

Chicago 36
I

47 51

Table 1. Wheat freight rates in cents per bushel.
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In this problem, the quantity of wheat which has been sold is just equal
to the quantity of wheat in storage. This need not necessarily be the case in
practice, but we have designed this problem to illustrate the general method
with the use of the simplest mathematics.

For convenience we can combine our data into a table, which indicates
quantities and costs as shown in Table 2. The figure in the upper right-hand
corner of each square is the freight rate between the two cities.

Quantity
in Storage

Quantity
needed 20,000 36,000 34,000

To
From

Denver
1 42

Miami
55 1L

New York
60

50, 000 Grand Forks

40, 000 Chicago
36 47 151

Table 2. Data arrangement for solving grain problem.

Our problem is to find the quantity of wheat to fit into each of the 6
squares so that (a) the amounts in the first row add up to 50,000 and the amounts
in the second row add up to 40,000 (i. e., the total amounts to be shipped from
Grand Forks and Chicago, respectively); (b) the amounts in the first, second, and
third columns add up to 20, 000, 36, 000, and 34, 000, respectively (i. e., the
amounts to be delivered to Denver, Miami and New York, respectively); (c) the
total freight cost is a minimum (this cost is obtained by multiplying the amount in
each square by the rate in the upper right-hand corner and adding these six numbers
together).

It is not sufficient to select the numbers of each box so that the sums of
the terms in the rows and columns are correct (a feasible solution). We must
also minimize the total cost. With "cut and try" methods, we might find such a
solution. However, a systematic approach takes less time and, for problems
with more shipping points and with more destinations, a systematic approach
(an algorithm) and a computer are essential.

We can simplify the numerical values by expressing the quantities in units
of 1000 bushels. Thus 20 units of wheat must be delivered to Denver, 36 units to
Miami and 34 units to New York. In Table 3 these values, in terms of units of
1000, have been shown in the circles. If we designate the quantity of wheat shipped
from Grand Forks to Denver as x units, then (20-x) units must be shipped from
Chicago to Denver, to complete the order. Similarly, if we designate the amount
shipped from Grand Forks to Miami as y, then the amount from Chicago to Miami
must be 36-y. Now the amount from Grand Forks to New York must be 50-x - y
if the total out of Grand Forks is to be 50. The amount from Chicago to New York
must then be 34 - (50-x-y) =x + y - 16. (We automatically satisfy the requirement

B-2. 8



www.manaraa.com

that the total shipped from Chicago is 40, since the total amount sold equals the
amount owned. )

Quantity

Quantity
in storage

LO De
Delivered --41. G 0 e

To
From Denver

x
142

Miami

Y.

55

New York

50-x-y
1 60

CD)

Grand
Forks

Chicago 20.x
b± J

36-y
47

x+y-16
151

Table 3. Table 2 with data entered and unknown quantities
x and y defined.

Table 3 now represents the quantities of wheat (in thousands of bushels)
to be shipped from each storage house (Grand Forks and Chicago) to each desti-
nation (Denver, Miami, and New York). Because of the way the six entries are
selected, each row and column adds up properly. Thus, our task in optimization
is now to select x and y and, hence, each of these six entries:

x, y, 50-x-y, 20-x, 36-y, x + y -16

There is one additional part of the model (or the constraints -- again it
is immaterial whether we assign a relationship to the model or the constraints
section of the problem). Each of the entries in Table 3 (the six items listed just
above) must be positive or zero; we cannot ship negative quantities of wheat.
Therefore, in addition to Table 3, we must add the six inequalities:

x > 0

y> 0

50 -x-y> 0
20 - x > 0

36 - y > 0

x + y - 16 > 0
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These inequalities can be rewritten in the following form, if we rearrange terms:

By adding terms to both

sides of the inequalities

x> 0

y> 0

y < - x + 50

x < 20

y < 36

y> -x 16

We now have the model and constraints, represented by Table 3 and the
six inequalities above. Before considering the criterion function (the cost to be
minimized), we can represent our six inequalities on a graph of y versus x.
Each inequality states that we must work on one side of a straight line in this
plane (these are linear inequalities; they divide the plane into two regions by a
straight line represented by the linear equation formed when the inequality sign
is replaced by an equals sign).

For example, the first inequality

x > 0.

requires we operate to the right of the y axis; the fourth

x< 20

places us to the left of the vertical line x = 20. The effect of these two inequalities
is to restrict our choice of x and y to the region shown in Fig. 3.

x> 0 x< 20

Feasible o
0 region for n

CM

11 inequalities xx
I and 4

X

Fig. 3. Plot of the vertical lines x 0 and x 20
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Each inequality thus divides the x-y plane in half by a straight line; the
equation of this line is obtained by replacing the inequality sign (< or >) by an
equals sign. Once the line is drawn, we can determine which side is permissible
by inspection of the original inequality.

Figure 4 shows the six straight lines and the corresponding permissible
regions. Satisfaction simultaneously of the six inequalities requires that we
operate (select x and y) either within the "Feasible region" indicated in Fig. 4
or on the boundary of this region.

Feasible
region

X

/ / // /// / ///////// // /71//////////////y =0

0
11

X

Fig. 4 Graphical representation of the six inequalities of the model
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Criterion function. Figure 4 and Table 3, together, now represent the model
and the constraints of the total problem. Before we can start the optimization
we need to determine an equation for the criterion -- the cost. Optimization
then consists of looking for a point (x and y) within the feasible region at which
the cost is minimized.

The cost of each shipment in each of the squares of Table 3 can be ex-
pressed by multiplying the number of bushels shipped times the cost of shipping
for each bushel. The sum of all these individual shipping charges then gives an
expression which represents the total cost of the entire shipment. Thus the
shipment from Grand Forks to Denver, which involves x units of wheat (]000
bushels per unit) costs (1000x),42 cents or 1000 (42x) dollars 10(42x) dollars.

00
In a similar fashion, we can compute the cost of shipment between any two cities
for each of the squares. The total cost of shipping is given by the expression

C 1042x + 55y + 60(50-x-7) + 36(20-x) + 47(36-y) + 51(x + y - 16)

If this expression is simplified by basic algebra, we obtain the equation:

C = 45960 - 30x - lOy (in dollars)

Rearrangement of terms produces an equation:

y = -3x + (4596 -

This is a linear equation with a slope of - 3 and an intercept on the y
axis of (4596-C ). Any acceptable solution must have values for x and for y

10which satisfy this equation or lie on the line which represents this equation. For
any particular value of x, y will depend on the value we assign to C -- the smaller
we make C the larger the value for y will be.

We can reverse this statement and say that large values for y represent
small values for C. In other words to determine the smallest value for C (the
shipping cost) we must graph the equation so that (1) it has a slope of -3, (2)
it lies in the feasible region, and (3) it cuts the y axis at the largest value.
Such a line can then be used to determine the value of x, y and C to meet the
constraints.

In Fig. 5, two dotted lines of the correct slope and in the feasible region
are shown. The dotted line to the right, when extended, produces the largest y
intercept and yet falls in the feasible region. This line therefore represents the
"line of minimum cost". It passes through the intersection of the lines

y -x + 50 and x 20.

When these equations are solved simultaneously, we find that (x 24, y 30) is
the solution for minimum cost, with

C 45960 - (30) (20) - (10) (30) 45060.
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0
I

36 111 11 1 1111111111 II

1=

20
111

oo
10

3
E.\ 0:45060

z
1

1

20

Fig. 5 Feasible values of x and y.

The minimum-cost solution is shown in Table 4. It is interesting that
no wheat should be shipped from Chicago to Denver even though such shipment
involves the lowest rate per bu-thel. (As discussed in the preceding chapter,
intuition is often not very valuable in optimization problems).

To
Fro Denver Miami New York

Grand
Forks 20

42
30

55
0

60
50

Chicago 6
47 34 51 40

20 36 34

Table 4 Minimum-cost solution for grain problems.



www.manaraa.com

Using the same reasoning as above we conclude that the largest value
of C is associated with the least value of the y intercept. The cost line to the
left of Fig. 5 does have the smallest value of the y intercept which is within the
region of feasible solutions. The point through which this cost line passes is
(x 0 y = 16); substituting these values into the cost equation reveals that the
greatest possible cost of transportation is $45,800.

One may be tempted to scoff at the small savings obtained by our analy -
sis. The difference between the best and the worst feasible solutions is only
$740 out of about $45 000. However this 1.6% difference can be a substantial
percentage of the profit involved in die sales (many industrial operations operate
with relatively small profit percentages). If the maximum profit is 5% ($2250),
we realize one third of that merely by optimum planning of the transportation.

The example of this section represents the essential elements of the
class of optimization problems of interest in the subject of linear programming.
In the following section, we conclude this portion of the chapter with a brief
discussion of the scope and nature of linear programming.

4. LINEAR PROGRAMMING PROBLEMS

Linear programming problems are optimization problems characterized
by a model and constraints consisting of a set of linear equations and inequalities,
and by a criterion function (to be maximized or minimized) which is a linear
combination of the variables. In this discussion, the term linear refers to equa-
tions or inequalities in which the variables (xy y, . ) appear alone and to the
first power (the equations are straight lines, as in the examples of the preceding
section).

More realistic blending and transportation problems may involve up to
100 variables. In such cases it is impossible to draw a graph of the feasible
region. One of the features we observe in the simple problems treated above
carries over to the more complicated problems: that is, the point which repre-
sents an optimum solution occurs at the boundary, and not in the interior of the
feasible region. The solution is usually represented by a point at a vertex of the
polygon which encloses the area of feasible solutions: i.e. at a point where two
of the inequalities are equalities. In rare cases the solution may be along an en-
tire "edge" instead of at a "vertex".

Linear programming problems which involve more than two variables are
quite common in engineering as well as in industry and would require long and
tedious computations for their solution. The computer has made possible the
treatment of such problems, so that decision-making in engineering and in indus-
try becomes more effective because more of the limitations which exist in the
real world can be included in the mathematical model.

The computer must be programmed for such problems, and an algorithm
for linear programming problems, named the "simplex" algorithm, has been
developed which depends on the property of "vertex solutions" described above:
namely that the minimum or maximum solution is represented by a point at a
vertex or point of intersection. If n inequalities define the region of feasible

13-2. 14
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solutions, these inequalities are first converted into equations by defining
additional variables (e.g., x + y < 50 becomes x + y + z = 50 where z has a
positive or zero value). The computer is then programmed to solve these
linear equations to determine the vertices and the value of the criterion function
at each vertex in sequence. In addition, the computer is programmed to move
automatically from one vertex to the next in such a way that the criterion function
continues to decrease (or increase, if we are trying to maximize).

Since the location of a vertex may require the solution of several dozen
simultaneous linear equations the necessity of a computer to handle the routine
computations is obvious. The importance of the computer exists in even relative-
ly simple problems (such as the transportation problem of the last section) if we
want to find the optimum transportation plan with several different sets of trans-
portation costs (or changes in the numbers involved in the model or the criterion
function). Such an investigation is particularly important if we are not sure of
these numbers (e.g. shipping costs might vary from day to day or might depend
on the availability of trucks at the moment we place our orders).

5. MINIMUM WIRE LENGTH

In this section, we continue the discussion of optimization by considering
an algorithm for an entirely different class of problems. We consider a com-
munity which, for all practical purposes is stretched out along one road. Each
building requires a certain number of telephones. Each telephone is connected by
a wire to a switching center. When a telephone call is made, the ends of the
appropriate wires are conAected by switches in the switching center. Where
should we construct the switching center in order to minimize the amount of wire?

This idealized situation is generalized in the problems (at the end of the
chapter) to a sligi tly more realistic situation. The real situation is extremely
complicated since we must consider factors like: price of land, expected growth
of the community, cost reduction due to the fact that a cable with n wires does
not cost n times as much as a cable with one wire, the fact that in some areas
cables can be hung on poles while ir others the cable must be buried, etc.

Figure 6 shows the simplest possible problem of any interest: namely
two buildings one building with two telephones (small squares) and the other

Switching
center

(a)

(b)

2
Switching

center

Fig. 6. Possible locations of switching center for two buildings.
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building with one telephone. If the switching center (the large circle) is
located in the building with one telephone we need two wires between buildings.
If the switching center is located in the building with two telephones,, we need
only one wire between buildings. Obviously the latter location uses less wire.

Figure 7 shows a slightly more complicated case involving four buildings
with 3 1, 3, and 2 telephones respectively. The four possible locations of the
switching center are shown. We let the lengths of the segments 1, 2, and 3
be L1,

L2, and L3 respectively.

A

m 64 db
Li 01.-- L2 L3

(a ) Wire length=6Lr+ 5L2+ 2L3

a6r ab
( b) Wire length= 3L1+ 5L2+ 2L3

itd36 6 did eA
(c) Wire length= 3L1+ 412+' 2L3

bbd
( d ) Wire length =3L 1 1. 4L2IF7L 3

Fig. 7 Switching-center location for four buildings.

In Fig. 7(a), the total length of wire which is required is shown as 6L1 +

5L2 + 2L3.
If we now shift the switching center to building B, as shown in

Fig. 7(b), the total length of wire is 3L1 5L2 2L3. If we compare this value
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to the original value above, we note that this new position for the switching cen-
ter involves less wire: a reduction of 3L

1
units of length, since L2 and L3 are

not affected by the change.

If we now shift the switching center to building C, the length of wire re-
quired is shown in Fig. 7(c) as 3L1 4L2 2L3. This new length is less than
that with the switching center at building B by an amount L2. The L1 and L3
lengths are not affected by the shift from B to C.

If we now try to shorten the wire length further by placing the switching
center at building D, the wire length is found to be greater than the length re-
quired from building C by 5L

3
units, since now the L

1
and L7 values are not

changed. Obviously the location of the switching center which requires the least
wire is that at building C. This location is determined without regard to the
actual values of LP L2 or L3 (these lengths can have any non-negative values).

Can we observe anything about these examples that would help us in more
complicated problems with many buildings and many telephones? In Fig. 7 there
are three "segments" (intervals) between buildings. We note the following facts:

The discovery that the actual lengths of the distances between buildings
is not involved in the placement of the switching center for minimum wire len th
is very interesting. It means that the only factor (which determines t e minimum
that we seek) must be the number of telephones on either side of the switching
center. If we begin our search with the assumption that the switching center is
at the building at the extreme left, the first shift of position changes the first
length from 6L1 to 3L1, all other lengths remain unaffected. In this case, we
reduce the telephone rine length.

A shift of the switching center to building C does not affect the length 3L1,
but requires four lengths of L2s It is also apparent that the two wires (2L3) are
not affected. Thus the second shift produces a change only in the second term
which is equal to the number of phones to the left of C multiplied by L2. Since
the term 4L7 replaces the term 5L2 of the B location (all other terms remain
unaffected), -location C is preferable to location B.

How does a shift to D affect the length of line? The 3L and 4L7 terms
are not disturbed, but we now have 7 telephones to the left of tie switching center,
each of which requires an additional length L3 to reach the center. This replace-
ment of 2L

3
by a new value 7L

3
obviously represents an increase in length com-

pared . ito location C, and this is true regardless of the actual value of L1, L2,
or L3.

This leads to a simple algorithm to find the optimum location of a switch-
ing center:

1. In each segment (between buildings), we determine the number of
telephones to the left and to the right of the segment, and write these
numbers below the segment as (NL, NR).

2. We place an arrow below the number pair pointing from the smaller
number toward the larger number.

B -2. 17
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3. We find the building where the arrows point to it from both sides;
this is the location of the switching center that gives the shortest
length of wire.

Let us try the algorithm on the examples of Figs. 6 and 7. In Fig. 6,
there are 2 telephones to the left and 1 to the right of the central segment so we
write (2, 1) and put an arrow underneath pointing to the left (from the smaller
number 1 toward the larger number 2) as shown in Fig. 8. In the "segment" to
the left of the central segment there are no telephones to the left and 3 to the
right so we write (0,3) there and put an arrow to the right. Thus the building on
the left has arrows pointing at it from both sides and is the best location..

(0,3)

optimum
location

1

(2,1) (3,0)
4 48--

Fig. 8. Optimum switching-center location for two buildings.

Irt
k

optimum
location

( 0 9 ) (3,6) (4,5) (7,2)
=11111 ....1110 rello 446r

(9,0)
4110

Fig. 9. Optimum switching-center location for four buildings.

In Fig. 9 for the four-building example, arrows from both sides point to
the second building from the right as the best location.

In Fig. 10, we show an example with more buildings and, in the problems
at the end of the chapter, we consider the extension to cases where the buildings
are not all on a single line.

4

/optimum
location

6 4 .1.11. 8 1111111D

(1,35) (4,32) (9,27) (11,25) (15,21) (17,19)(23,13)(27,9) (35,1)Oli ammo...0 ....40 411. olikr iern

Fig. 10 A 10-building example (it is helpful to note that the sum
of NL and NR always equals the total number of telephones).
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You may ask, "What about a location between buildings? " We can easily
show this is not helpful by putting in a "fictitious" buil ing (to house the switching
center) with zero telephones in it. Using our algorithm above we find the same
number pair (NL' NR) on both sides of this building and hence the arrows point
in the same direction on both sides; therefore, this vacant "building" can not be
the optimum location. We conclude that the best location is always at a building.
Whenever an algorithm has been developed for a type of problem, the computer
may be programmed for this algorithm and problems may then be solved quickly
and accurately.

6. A PRODUCTION PLANNING PROBLEM

There are problems which require optimization but in which the informa-
tion available for making decisions is not precisely known in advance. In this
section and the following, we conclude our discussion of optimization with two
examples of problems in which the model is probabilistic (i. e. the model can be
described only in terms of the probability that certain events will happen).

For example, the sale of bread at a bakery may vary from day to day in
a very irregular manner. On some days as few as 10 batches of fresh loaves are
sold. On other days a maximum of 14 batches of fresh loaves can be sold. A
single batch of bread contains 10 loaves.

If a loaf of bread costs 14 to bake and is sold when fresh for 22 there is
a profit of 104 per loaf or 1 dollar per batch. On the other hand unsold fresh
bread must be sold as "day old" bread at iq per loaf, which involves a loss of iq

40 per batch. If the owners of the bakery wish to maximize their
average daily profit over a period of many days, how many batches should be
baked? Baking only 10 batches will leave nothing for "day old" sales since they
never sell less than 10 batches. But the sales figures show that such small sales
were few. On only 5 days in 100 days did this occur. On other days they could
sell larger quantities and thus increase the overall profit. As a matter of record
their sales in the 100 days show:

10 batches of fresh loaves were s
11 batches of " 11 11

12 batches of
13 batches of
14 batches of

I I

I I

I I

Ii
Ii
I'

'I
'I
'I

old on 5 of the days
ti 20 of the days
" 50 of the days
" 20 of the days
" 5 of the days

Ii
Ii
'I

100

The owners expect the sales to be about the same for the next few months.

This is a problem involving probabilities. The sales records indicate that
the bakery can always sell at least 10 batches of fresh loaves. They can sell 11
batches 95% of the time (20 + 50 + 20 + 5 = 95), 12 batches 75% of the time
(50 + 20 + 5), 13 batches 25% of the time (20 + 5), 14 batches 5% of the time, and
they never sell 15 batches or more. Now if a batch is sold fresh it gives a profit
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of 100 cents 10 x (22 - 12), whereas if it is sold to the "day-old-baked-goods"
store it results in a loss of 40 cents = 10 x (12 -8).

What is the average profit that could be made from the eleventh batch?
Clearly since it is sold fresh 95% of the time and sold to the "day-old-baked-
goods" store 5% of the time, the average profit will be

0.95 x 100 - 0,05 x 40 s 93.

Similarly, the twelfth batch will bring an average profit of

0.75 x 100 - 0. 25 X 40 65

The thirteenth will have an average profit of

0, 25 x 100 - 0,75 x 40 = -5

This is an average loss of 5 cents. Similarly, we can show that the
fourteenth batch results in an average loss of 33 cents. Since, on the average,
the profit on the 13th batch is negative, it is obviously not worth baking, on the
average. Thus the optimum number of batches to make is 12; i. e. 120 loaves.
The average expected profit is

10 x 100 + 93 + 65 = 1158 cents
.1: $11. 58

The example completed above is relatively straightforward. The interest-
ing feature of this problem is the fact that the system model is not known precisely:
we cannot say with certainty that on any given day in the future, it will be possible
to sell 13 batches. All we do know is that, in the next 100 days, there should be
about 20 in which we can sell 13 batches.

In many of the situations requiring decisions in the real world, such pro-
babilistic models are unavoidable. When a man and his wife decide to travel to
a distant city without their small children, they often debate whether to travel to-
gether or separately. The decision depends on the evaluation of the probability of
a serious accident and consideration of the value they place on being sure at least
one parent makes the trip safely in order to care for the children in the future.

7. QUEUEING PROBLEMS

This idea of models involving probability can be illustrated by a group of
studies called queueing problems. These relate to the formation of queues or
waiting lines when customers arrive at a service facility and there is only a limit-
ed number of service personnel. Queueing problems arise in such diverse situ-
ations as:

(1) Toll booths on a parkway, where long line of cars may build up
during periods of heavy traffic flow.
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(2) A barbershop or hairdresser operating without appointments.
Even though the barber may be idle a significant part of the time, there are
other times when a queue of three or four customers forms (the queue seldom
becomes longer because prospective customers turn away rather than wait).

(3) An airport in which only one runway can be used for take-off
and landings. Because of traffic demands generated by men anxious to return
home for the weekend. many major airports in the United States have very large
queues of planes circling and of aircraft waiting to take-off every Friday after-
noon about 5 p.m,

(4) A telephone exchange. On Christmas and Mother's Day, long-
distance toll lines are frequently saturated.*

(5) A production facility dependent, for its successful operation,
on a number of machines (e. g., 10) which must be maintained by two mechanics.
Each machine breaks down occasionally and can be repaired by a mechanic (with
an amount of time required for servicing which varies according to the nature of
the difficulty). In this case, the queue consists of inoperative machines being
repaired or waiting to be repaired (the customer for the service is the machine).

All of these areas are described by:

(a) Customers arriving to be serviced

(b) Service stations or personnel available in a limited
number to give the service, and

(c) A possible queue if customers arrive faster than they
can be serviced during a given period.

In the study of such systems, we might ask a variety of questions, such as:
(1) With given level of business (average number of customer

and specified service facilities (e.g. number of toll booths), what is the average
size of the queue?

(2) How often will the queue be longer than a given length (how often
does the barber lose possible customers who look in the window and then disappear
if there are more than two men waiting)?

(3) What is gained by adding another service station (an additional
toll booth or an extra barber and chair)?

(4) What can be gained by reducing the time required to service
customers?
* The telephone-system example is particularly appropriate, since the major
portion of the basic work on queueing problems was developed for guiding the
design of telephone systems.
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We should like to be able to answer such questions mathematically (or by
computer studies), since in many cases it is just not feasible to experiment on
the actual system. We can hardly expect political approval for constructing
another runway at an airport if we merely express the desire to experiment in
order to see how such an addition would decrease the number of planes stacked
over the airport on Friday afternoon. Thus, queueing theory is concerned with
seeking solutions to questions (such as cited above) on the basis of studies of the
model.

In this section, we can only introduce the subject and give a general indi.
cation of the type of results which can be realized. In particular, we restrict our
consideration here to a very simple sub-group of queueing problems in which we
can obtain simple answers; in more complex problems we have to use the digital
computer to obtain simulations (computer models) of the actual system. In par-
ticular, the following paragraphs consider only the single question: what is the
average queue length in a very simple class of problems?

Arrival of customers

In our attempts to simplify the problem, we first consider a very special
way in which customers arrive at the service facility. Specifically, we assume
that they arrive completely at random and independent of one another. In other
words, if we represent the average number of customers arriving in a unit time,
we assume that in any short interval dt the probability of a customer arriving is
adt. For example, if a= 0.25/minute (on the average 1/4 customer arrives per
minute or one customer every four minutes), the probability of a customer arriv-
ing in any given 1/10 minute is (1/4) (1/10) or 1[40; this number i1; correct re-
gardless of what 0. 1- minute interval we choose -- even if we choose an interval
just after the arrival of another customer.

All we are saying in the preceding paragraph is that the customers arrive
at a certain average rate (a), but exactly when they arrive is pure chance.
Occasionally several customers arrive in close succession; on other occasions
there are long intervals between arrivals.

This assumption of random arrivals is used because tle solution of the
queueing problem is thereby greatly simplified mathematically. Actually, how-
ever, there are many cases in which the assumption is very close to the actual
situation. Telephone calls during a busy period may be placed at random; custom-
ers do often arrive at a barbershop nearly at random. When highway traffic densi-
ty is not too great (so cars do not clog up behind an occasional, slow vehicle),
cars may arrive at a toll station according to our assumption.

* If we study probability, we find that this assumption is described by saying
there is an "exponential distribution of times between arrivals."
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Servicing time

Our second major assumption is that there is only one service facility
or person: only one barber, one runway, or one toll collector to service the
arriving customers. Furthermore, we assume that the times required to service
the various customers are either:

(a) All equal, or

(b) Vary in exactly the same way as the inter-arrival times
of the customers (with an average value, then, some less
and others greater than this average at random).

In other words, we assume that every customer requires the same length
of time (a case which would be approximately true for landing airplanes or hair-
cuts) or that the required service time varies in a random fashion (the probability
of the end of the service period lying in a particular time interval does not depend
on the location of that interval).

Actually, we could complete this section by considering only the charac-
teristic of equal service times. The only reason we add the random variation is
to show in the examples below the effect of different customer service times (an
effect with which we are all familiar as a result of waiting in line behind the little
old lady who has a thousand questions she must ask).

Utilization

Before co-asidering the problem of the queue length (the ultimate goal of
this discussion), we need to ask one preliminary question: can the service station
do the required job of handling the arriving customers? In other words is the
service facility (with its specified servicing time) capable of processing the
customers (with their average arrival rate)? Or, does the lystem break down
completely, with the number of waiting customers tending to grow without limit?

The answer to this question depends only on a ratio which we call 13:

R
(3 average servicing time

average inter-;Irrival time (1/a)

If p<1, the service facility can process the customers; if 13>1, the system cannot
work and the concept of a queue is meaningless. In other words, on the average
the service facility must be able to process customers faster than they are arriv-
ing on the average.

This result is hardly startling. If airplanes arrive at an airport at an
average rate of two per minute and they can land on the single, available runway
at a maximum rate of one per minute (corresponding to a servicing time of one
minute per customer), it is clear that the system cannot operate successfully:
the sky will gradually fill with aircraft.
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The quantity p, which is called the utilization factor in books on this
subject of queueing, is a measure of the fraction of time the service facility is
used. Thus, if p = 7, the service personnel and equipment are being utilized
70% of the time ..- in an eight-hour day, the barber (for example) would be giving
haircuts 5.6 of the hours.

Length of the ctueue

We are now ready to discuss the queueing problem, and in particular the
average length of the queue. In the preceding paragraphs, we have considered
the arrival of the customers (at random with an average rate of a), the servicing
time, and the utilization factor p. In crder to describe the problem in specific
terms, we consider the barbershop situation.

We make the following assumptions:

(1) There is one barber.

(2) Customers arrive at random, at an average rate of one every
20 minutes (hence, a = 1/20).

(3) The service time is 14 minutes for each customer (i. e., a
haircut requires 14 minutes, including the time to seat the
customer, to accept his money and receive the tip, and so
forth). The service time is identical for all customers.

We are interested in the question of how long the queue will be on the aver-
age in this barbershop. Li particular, we are interested in what happens after a
steady, normal operation has developed. When the barbershop first opens for
business at 8:30 a.m., the first customer clearly experiences no wait at all. The
second customer certainly does not have to wait more than 14 minutes, and very
likely he has a much shorter wait. After the shop has been open, for several
hours, however, the effects of the initial opening die out, and the system operates
in what is called a steady-state fashion.

In this steady-state operation, the actual situation is, of course, governed
by probability. Since the customers arrive absolutely at random, we cannot pre-
dict for any particular customer whether he will have to wait or not. Instead, we
can lay that there is a certain probability he will be served immediately, or a
different probability that he will be served in less than ten minutes, etc. Alterna-
tively, we can determine the average length of the queue.

This average queue length, q, is given by the formula*
= (1 - 3)

q 1 - p

This is the formula valid for our particular problem: one service facility, random
arrivals, and constant servicing time.

We do not derive the formula here, since that would involve an extensive
detour into mathematics which is not of primary interest.

B-2.24
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For our particular barbershop problem, p has the value 0.7 [14 minutes/
20 minutes = (servicing time) / (average inter-arrival time)]. Incidentally, if
P were greater than unity, the problem would be done: the single barber cannot
handle the customers and the queue length is irrelevant. Since 1 is less than
unity (indeed, the barber is busy only 70% of the time), we can substitute in the
above equation to find q:

0. 7 c1 - 2 0.7)
q- 1 - 0. 7

On the average, the queue length is 1. 51 customers.

Our barber may well be very satisfied with this state of affairs. He is
working 70% of the time and most customers do not have an unreasonable wait
for service. He is, however, troubled by the situation which develops on Satur-
days, when for some reason the shop seems to be filled with impatient customers.
With his elementary knowledge of queueing problems, he watches again the situ-
ation on Saturday and finds that he has 40 customers in an average ten-hour day.
In other words, customers on Saturday arrive at the rate of one every 15 minutes
(rather than every 20, as during the week).

This decrease in average inter-arrival time means that
14

P =15 = 0. 933

He realizes now why he is exhausted every Saturday night: he is working 93. 3%
of the time on Saturday, or with only 4 free minutes each hour on the average.
Furthermore, substitution of this value of p in the equation for average queue
length reveals'

0.933(1 - 0.467)
q 0. 067

(This average queue length is now so long the validity of the model is open to sus-
picion: can the barbershop hold all these men waiting for haircuts? Furthermore,
since some people experience no wait, there must occasionally be individuals who
arrive with a queue of perhaps 12 customers).

In order to improve the Saturday situation, our barber has two obvious
alternatives. He can try to hire an additional barber to work only on Saturday
(this alternative is not particularly attractive since every other barber shop is
looking for Saturday-only employees wage rates are high, and extra equipment
is needed). The second possibility is to reduce the servicing time by speeding
up his own work (while customers might occasionally be unhappy, the customer
dissatisfaction stemming from the waiting time is already great). If he can bring
his servicing time down to 10,, 5 minutes he can restore the 0.7 value for p to re-
duce the average queue length again to tile weekday 1. 51.

B-2. 25
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C omment s on the example

Two general comments should be made about this example, and indeed
refer to optimization problems in general. First, there is always a question
about the validity of the model. In this problem, we have made various assump-
tions -- e.g. the randomness of customer arrivals and the equal servicing times.
What happens when these assumptions are not true in the actual system we are
studying? Are our numerical results of any value?

Certainly no barbershop operates exactly as we have assumed here. For
example, if there are four men waiting, very few customers would be likely to
enter to increase the queue length. In the real world, servicinetimes are not
equal, even in a barbershop or for a telephone exchange.

In spite of such aspects which mean that our model is only a rough repre-
sentation of the actual world, tie numerical answers obtained by queueing theory
are often extremely valuable as guides to system design and optimization. In
practice we analyse a situation with known characteristics when we can compare
the theoretical results with the actual situation. If this agreement is good, we
assume the model is adequate and then use that model to study the effects of
system changes (an additional barber, a reduction in servicing time, etc. ).

The second general comment relates to the rather simple, specific pro-
blem discussed above. Can these same methods be applied to more complex and
interesting problems or to answer other questions about the system (e.g. we
might ask what fraction of the customers will arrive at the barbershop when the
queue length is two or greater -- these might well be the prospective customers
turned away by discouragement).

As mentioned earlier in this section, one way to broaden the problem is
to assume a distribution of servicing times, rather than a constant time. If, for
example, we find that the servicing times are distributed at random (just as the
inter-arrival times) with an average servicing time known, we find that the
average queue length is given by the equation

"6-

rather than the formula given earlier for constant servicing time. For the two
values of R given in the barbershop example, the resulting values of q are

(3 q (constant servicing time) q (random servicing time)
0.7 1.51 2.33
0. 9 33 7.4 14

The queue length is increased markedly when occasional customers require a
long time for servicing.

Finally, this entire subject of queueing problems is related to optimization
in a way which may seem somewhat indirect when we only have the above, simple
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examples as background. Queueing theory is a basis for optimum design: a
study of these problems indicates, for example, how many toll gates are re-
quired to yield the simplest (or most economical) system which services the
customers without objectionably long queues. More advanced consideration of
queueing problems also indicates the quantitative value of adopting different
priority policies: should we take the customers on a first-come, firt.-served
basis or on the basis of the fast customers processed first; what is gained by
using an express counter in a bank or supermarket for customers who can be
rapidly serviced?

8. CONCLUDING COMMENTS

We are now at the end of two chapters devoted to the fundamental ideas
underlying a variety of problems calling for optimum decisions. In general, the
formulation of these problems requires a model of the system to be designed and
a listing of the constraints which are imposed. Once this model is chosen, the
criterion function is selected -- i.e. we decide how to measure the quality of
the system, or what specifically it is that we wish to optimize. At this point,
we are ready for the actual act of optimization: the determination of the design
such that the criterion function is maximized (or minimized).

In this and the preceding chapter, the models are usually conceptually
simple, although they may involve many variables and it may be very difficult
to determizie suitable values for the parameters (the numbers of the model). Be-
cause the models are relatively easy to understand, we can focus our attention
on methods of solution -- and particularly the optimization portion of the problem.

The problems considered in these two chapters all lie within the field of
engineering called operations research. This name is somewhat unfortunate, *
since the field is part of applied science and engineering and does not necessarily
involve research at all.

In the chapters which follow, we extend these ideas of optimization and
modelling to a much broader class of problems than we have considered in these
two chapters. In particular, we are interested there in dynamic systems --
systems whick, move or change with time. In such cases, the modelling part is
a difficult and focal portion of the problem, and most of our attention is focussed
on the understanding of the idea of modelling. It is difficult to discuss optimi-
zation in detail until we have acquired a rather deep background in basic engi-
neering concepts.

* It arose because the field evolved from research into military operations during
World War II.
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PROBLEMS

2.1 Suppose that a radio manufacturer turns out only two types of radio: a
standard model, selling at a profit of $20 each, and a luxury model, selling
at a profit of $30 each. The factory has two assembly lines, but their ca-
pacity is limited. It is possible to produce at most either 8 standard radios
or 5 luxury radios per day on one assembly line. The manufacturer is faced
by another constraint: owing to limited skilled labor supply he has only 12
employees, so the available labor amounts to 12 man-days per day. To as-
semble a standard radio requires one man-day, but it takes two man-days to
make a luxury radio.
(a) How many radios of each type should he produce in order to maximize
his profit?
(b) What will this maximum profit be?

2.2 In the transportation problem of Section 3, suppose that the amount of wheat
at Grand Forks is 30, 000 bushels and at Chicago is 60, 000 bushels. Find
the minimum cost shipping plan.

2.3 An oil company has 200 thousand barrels of oil stored in Kuwait (on the
Persian Gulf), 150 thousand barrels stored in Galveston, Texas and 100
thousand barrels stored in Caracas, Venezuela. A customer in New York
would like 250 thousand barrels and a customer in London would like the
remaining 200 thousand barrels. The shipping costs in cents per barrel
are shown below. Find the minimum cost shipment schedule.

Kuwait Galveston Caracas

New York 38 10 18

London,... 34 22 25

2.4 a. Find the optimal location for the switching center when the number
of telephones in each building (reading from left to right) is

8, 7, 8, 2, 2, 5, 4, 6, 7, 1.
b. Did you obtain all the optimal locations?

2.5 Consider the diagram on the right. Two rows
of buildings are separated by a street. Find
the optimal location for the switching center
if there is the following constraint: a wire that
goes across the street must be undergruund.
(The expense would limit the numbers of tun-
nels across the street to one. )
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2.6 (For Special Credit) The restriction in Section 5 that the buildings must lie
on a single road (note that the road need not be straight) can be relaxed.
Suppose the buildings lie on a road network as illustrated below.
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Each small circle is a building. Notice that there is exactly one path between
any two buildings. A configuration with this property is called a tree. The
community has many other roads but telephone lines can be laid orifcr-on the
indicated roads because (a) of town lawG, (b) of geographic obstructions,
(c) of economic factors and (d) for a tree we know how to solve the problem
of optimal location of a switching center.
a. For the single road town problem, the optimal location was characterized

by two inequalities. What characterizes the optimal location for the tree
town problem? You can obtain the correct inequalities by the same analy-
sis used in the text.

b. Find the optimal switching center location for the figure above.
c. Give an algorithm for making the necessary calculations in a systematic

and efficient way.

2.7 A new stand buys a certain weekly magazine for 20 and sells it for
Left-over magazines can be returned at the end of the week for a refund of

Their records show that they sell:

46-50 magazines 5% of the time
51-55 " 10% of the time
56-60 20% of the time

30% of the time
66-70 15% of the time
71-75 12% of the time
76-80 8% of the time

Tt5"6

How many magazines (to the nearest five) shoulc the newstand order to
maximize the average -weekly profit? What is the maximum average weekly
profit?

2.8 In a barber shop the service time is 15 minutes per customer. The cost for
a haircut is $2. 00.
a) If the average inter arrival time is 20 minutes, find the percent of time

the barber will be working.
b) Assumin.g that we are talking about constant service time, what is the

average queue length?
c) What is the gross income per day (neglecting tips), assuming an 8-hour

day?
d) In order to stay in business the barber must gross at least $40/day. If

he wishes to keep his percent of working time constant and does not wish.
to speed up his service time, how much must business increase before
he can afford to hire another man, costing $20/day?

e) If he had not hired a new man when business increased by the amount in
part (d), what would be the average queue length (still assuming constant
service time)?

2.9 In the previous problem we assumed constant service time.
a) Use the same figu as and calculate the queue lengths of (b) and (e) as-

suming random service time.
B-2.30
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b) Which is a more realistic model for serving time, constant or random?
c) How could the barber decrease his queue length without getting more help?
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Chapter B-3

MODELING

In Chapter B-1 we learn that the making of decisions, an everyday need
that too often is satisfied by chance or whim, can be done in an orderly and
reasonable way. The process is to derive a model, to select criteria, to ...xamine
the constraints that exist, and after making a trial solution to attempt to optimize
this solution. In this chapter and the next one we study models in more detail.
1. THE NATURE OF MODELS

According to an old story, six blind men who had never seen an elephant
tried to decide what it was. The first man, feeling the elephant's flat, vertical
side, concluded that the beast was similar to a wall. The second man touched a
round, smooth, sharp tusk, and decided that an elephant is similar to a spear.
Grasping the squirming trunk, the third blind man said that the animal resembled
a snake. The fourth man, who touched a knee, observed that elephants resembled
trees. From an exploration of the ear of the elephant, the fifth man was convinced
that the animal had the shape of a fan, while an examination of the tail convinced
the sixth blind man that an elephant was similar to a rope.

Each, of course, was partially correct, but insofar as a complete repre-
sentation of the elephant was concerned, all were wrong. Each man, after ob-
serving the "real world", formulated a description, i.e., a model of the real
world. But since the observations were incomplete, the models were incorrect.

Every time we describe, an object, we really construct a model. We per-
ceive and think in terms of images, but these images are models of the world
about.us. Information about the real world can only come through our senses.
From this information the mind infers interrelationships which produce the effects
we observe. These inferences constitute the models.

The model provides an efficient way of viewing, for it is not required to
tell us everything about what we observe, but only what we believe to be useful.
No model is ever a complete representation; it must be only a simplified ver-
sion of the real world. Therefore its usefulness will be limited because it in-
cludes only those properties of the real world which are of importance at the
moment. We comprehend our environment through the models that our minds con-
struct.

An important factor in human progress is man's capacity to construct models
which are more versatile than the models our minds build for us automatically.
More and more we build purposeful models, based on scientific data and measure-
ments. These are essential if man wishes to obtain a more complete understanding
and greater control of the environment in which he lives.

Models begin as conceptions; that is, they are ideas about the structure and
nature of something. Once an idea of the structure and nature of a thing is con-
ceived, it may be expressed in many different ways -- we may have different
models. Some, as we have seen, are verbal models. A map is a model: a

The Blind Men aad the Elephant (J. G. Saxe, 1816-87).
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graphical model. Other models are mathematical, in which quantitative expressions
are used to describe and to show relationships in a highly precise way. We shall also
discover that models are frequently developed which employ computers, others
make use of electric circuits, or of hydraulic, mechanical or chemical systems.

An aircraft represents so complicated an aerodynamic problem that a
complete mathematical description may be impossible. Therefore, it is
usually modeled by constructing a small-scale version of metal or wood for
testing in a wind tunnel. In each case the attempt is made to provide a simpl-
ified but accurate representation of the really essential features of the thing
being described. The secret of effective modeling lies in knowing what to in-
clude and what to omit.

Models are used, not only to describe a set of ideas, but also to evaluate
and to predict the behavior of systems before they are built. This procedure
can save enormous amounts of time and money. It can avoid expensive failures
and permit the best design to be found without the need for construction of
many versions of the real thing. Models evolve, and it is customary to go
through a process of making successive refinements to find a more suitable
model. A familiar example is the testing of a number of small-scale model air-
planes in a wind tunnel before final design is accepted.

In other cases too, such as in the development of a model for a nerve
cell, there is need for successive refinement. A preliminary model is
designed, it is tested against the real nerve cell, then the model is modified
so that it becomes more realistic in its behavior. There is thus a continued
process of successive approximations until an accurate and revealing fit
between the model and the nerve cell is obtained. In the process of model
construction it is essential to alternate back and forth between the real world
and the model. Without this continued testing and refining, models can give
misleading results, and if models are inaccurately conceived or too simply
structured the results will be unrealistic and useless. Properly developed,
models are necessary tools without which we cannot react to the world
around us.

REAL
WORLD

K--MEASUREMENTS MODEL

ACCEPTABLE
MODEL

TEST

MEASUREMENTS

REFINE

'`UNSATISFACTORY

Fig. 1 The model-making process, shown as a block-diagram.
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The essential parts of the model-making process are illustrated in Fig. 1.
Measurements or observations of the real world are used to develop a model.
After a preliminary model is made, measurements and predictions made with
it are compared to the behaviour of the real world. In most cases these tests
show that the model is not completely satisfactory, so that it must be refined.
This process is repeated until comparison indicates that the model is acceptable.
The process is then considered as complete.

In the modeling of a nerve cell, or of the growth of a population of people,
the real-world measurements are made on a system which already exists. In
this case our model-making process is intended to produce a model which ac-
curately matches the real world. In the case where scale-model airplanes or
spacecraft are modeled, the real world object may not yet exist, and the box
marked "Real World" in Fig. 1 theoretically contains the real object which we
imagine and wish to achieve, as well as all pertinent facts about the real world
(such as the properties of air, characteristics of flight systems which have al-
ready been built, and the characteristics of various materials and fuels). The
model building procedures will be no different from those already discussed.

Models can be descri tive, as in verbal, graphical, or mathematical
representations. They can also e functional (they "really work"), as in scaled
down airplanes for use in wind tunne77=king replicas of nerve cells. In
the succeeding sections, we see how both descriptive and functional models are
developed and used. We investigate some simple models to observe how they
are developed and used to improve our understanding of the real world and how
they help Li. the design, manufacture, and operation of devices and systems.

2. THE GRAPH AS A DESCRIPTIVE MODEL

When data are collected about some aspect of the real world, we observe
properties that can lead to the formulation of a model. Suppose we wish to
determine if a simple relationship exists between the heights and the weights
of 17-year-old men. After making several experimental measurements, we
may secure a set of related numbers such as 5'6", 130 lb; 6'1", 180 lb; 5'7",
155 lb; etc. But it is difficult to discover any systematic relationship in this
way. Even though we may have a reasonable expectation that as height in-
creases, weight will increase, this verbal model is vague and imprecise.
Suppose now that we make a graphical plot of the data, as in Fig. 2. Each
point represents the height-weight data for one man. We notice now that the
points are not scattered, but seem to be closely grouped. Of course there are
several points which fall some distance from most of the others, but in general
there appears to be a particular organization of points. What we can say about
the relationship between height and weight from this presentation of our data?

Notice that a straight line can be drawn through the points to represent
averages for these data. This is shown in Fig. 3, where the line is dashed
outside the region where the points lie. The vertical scale has been changed,
which causes the cluster of points to be slightly rotated. We can observe a
relationship between height and average weight. This graphical picture of the
data with the derived straight-line average gives us a graphical model of the
relationship.
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Fig. 2 Height-weight data for 17-year-old men.
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Fig. 3 Height-weight data converted to a graph.
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This graphical model presents a clear but simplified description of the
real world. It can be used as the basis for some reasonable predictions. From
the straight-line average we can estimate the probable weight of a 17-year-old
man even though we know only his height. Let us suppose that we wish to estimate
the weight of someone who is 511-1/2" tall. The corresponding weight for this
height can be immediately obtained from our graph. Notice that the graphical
model permits us to estimate the weight of such an individual, even our ori-
ginal data did not include any individual of this height. Thus we may predict
from our graphical model that an individual who is 511-1/2" tall will probably
weigh about 140 lb.

Once we have obtained the graph which represents the average, we
can often find a mathematical equation which describes it. Since our graph
is a straight line, we know from algebra that the equation has the general
form y = mx + b, or in this particular case,

w = ah + b

where w is the weight, h is the height, a is the slope, and b is the vertical
axis intercept. To complete the equation, we must therefore determine the
value of the constants a and b. Since b represents the y intercept of the line,
examination of the graph reveals that the line cuts through the Y axis at a

value of -260. This reduces the equation to

w = ah - 260

To determine the numerical value of a which represents the slope of the
line, we select any point on the graph, read the related values of w and h for
that point. If we substitute the values of v), h and b in the general equation for
the graph, we can solve for the value of a and thus establish the equation for any
and all other values of w and h.

Suppose we select on the graph in Fig. 3 the point h = 70" and w = 195 lb.
We can substitute these values the general equation for the straight line and
solve for the value of a.

Thus:

or
w = ah - 260

195 = a(70) - 260
a = 6.5

The equation for our graph is then

w = 6.5h - 260

For any given height h, we can determine the related weight w.
MINIPMC
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We can thus use this model to predict points which were not originally in
in our data sample. Bu.:. these predictions must be carefully examined. For in-
stance, the line we have drawn tells us that an individual who is 48" tall will
weigh about 52 lb; worse yet, a 24" person can be expected to tip the scale at an
impressive minus 104 lb! Surely these are curious figures for 17-year-old men.
What is wrong with our model?

The straight line average that we drew to fit the data was extended so that
the Y intercept (-260) could be found. But we are not entitled to say that all points
on the entire line must represent real situations. Actually, the only valid use we
can make of this model is to predict within our data field. We know that anywhere
inside of the cluster of measured points we are in the neighborhood of a real-world
possibility. However, we run into the danger of unrealistic prediction if we apply
the model beyond the region that has been measured. This is why part of the graph
was drawn with a dashed line.

Our model, therefore, has its limitations. It must not be used to predict
beyond the region of results experimentally obtained unless there are very good
reasons to believe that real-world laws are not being violated. To test this model
(as indicated in Fig. 1) requires that we obtain a fresh sample of 17-year-old men,
either the data from the same school for other years or data from other schools.
Then we either enter them on the plot or compare them with predictions made from
the algebraic model.

This is a mathematical model and it makes available in more compact
form exactly the same relationship that was displayed by the graphical model.
Both of these models are more useful than the verbal model with which we started.

One of the most interesting aspects of this model is the fact that it turns
out to be so simple. This is really quite unexpected. If we think of the people
we meet while walking down a busy city street, we know that all sizes and weights
are intermingled in a quite random way. It is true that the sample, studied was
passed through two strainers, so to speak (age and sex), to make isk more manage-
able. Even with these restrictions, however, the raw data coming from the phy-
sical education office showed little to suggest any other treatment than finding
simple averages.

In the example just treated, we have illustrated the nature and the utility
of graphical and mathematical models as means for establishing a basis for pre-
diction. To examine the process of model construction or modeling in greater
depth, we now consider a quite different example, but one that can, nevertheless,
be modeled in a somewhat similar vay. We develop a graphical model of the
traffic flow in a school.

3. A DESCRIPTIVE MODEL OF TRAFFIC FLOW

We turn to a problem of quote another sort, that of traffic flow. One of the
many stubborn parts of the urban problem we have already looked at briefly is the
question of how to handle motor traffic in the streets. Some cities have gone so
far as to ban all automobiles from certain streets (except for delivery vehicles
in the small hours of the morning, when no shoppers will be inconvenienced or
endangered). This doesn't so much solve the problem as eliminate it -- at least
from those streets. Furthermore, it substitutes other problems, for example
for the elderly and infirm. The urban traffic problem also includes those of air
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traffic into and out of airports (many planes using one runway or at best rather
few, the difficulty complicated by weather), and of railway traffic.

If a traffic engineer is to improve present conditions he must be able to
predict the results of the changes he suggests. To do this he must construct a
model of the traffic flow in and around the airport, railroad yard, or city. Since
such a model is too complicated for our purpose, we use a study of the simpler
circumstances within a school; even this we limit to what goes on at a single cor-
ridor intersection, such as that shown in Fig. 4. However, the limited model we
derive for a single intersection could be extended (often by means of new

North
Corridor

Main
Corridor

South
Corridor

Fig. 4 Schematic illustration of a school corridor intersection

measurements where circumstances are different) to a whole building. The
resulting larger model would be of practical use to school administrators and
schedule-makers.

In order to construct our model, we must determine the important factors
which affect the behavior of the system. We are primarily interested in the rate
at which people (teachers and custodians are people too) pass from one corridor
to another; in other words, in the density of traffic as measured in people per
minute. The measurement will be made by sensors, devices which respond in
some way whenever a person passes. An example would be the device often called
an electric eye, but for short-term service a much more practical sensor is a
person stationed at the proper spot.

Fig. 5 shows the intersection with measurement points identified. For
reasons which are obvious to high school students, traffic problems usually arise
at intersections rather in the main corridors*. What we need for the present is

*As Joe passes position T2 going ea.st he sees that Susan is going south past Ti; he
is immediately sure that he cannot survive math class next period if he doesn't
have the answer to his invitation to the party on Friday night, and so he reverses
his field and meets her in the middle of the intersection. Therefore they both hold
up traffic (and he is counted three times at T2; he might even stroll a few yards
down the south corridor with Sue and add two more tallies to his total).

B-3. 7
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Fig. 5 Where traffic density is measured

a. count, minute by minute during the time when classes are being changed, and
for a minute (or more) before and after.

Table 1 shows a possible result of such a set of measurements. The ac-
tual number of people who go through the intersection during the counting period

Minute
number

Counting station
T

1
T2 T3

Total
counts

1 26 counts 50 counts 30 counts 106

2 42 63 47 152

3 61 102 55 218

4 112 184 73 369

5 38 42 28 108

6 22 17 9 48
Total for period: 1001

Table 1 Detailed traffic count at one intersection, end of first period

is about half that shown, because each person was counted twice, going in and
going out (if we forget people like Joe in the footnote). It is immediately evident
that most of the traffic, but not all, occurred during the interval between classes.
The data can be made easier to see at a glance, however, by constructing a bar
graph (sometimes called a histogram), Fig. 6. The height of each vertical column
is proportional to half the total count for the minute indicated below it, half the
total for the reason just explained. The school administrator confronted with such
a bar graph might well be suspicious of the large traffic during the minute before
the bell rang for class changing: are some teachers dismissing their classes
early? He might also be disturbed by evidence of a good deal of tardiness, and
would no doubt send for the records of tardinesses reported in order to be sure that
all teachers are making it a practice to turn in such reports.

Further information, useful to the scheduling officer, can be obtained if
another bar graph is made, this time of total counts for each period during the

B-3.8



www.manaraa.com

"N,

Counts
per

minute

200

150

100

50

1
oft

2 3 4 5

Class -changing

period

6 Minutes

Fig. Bar graph of traffic at one
intersection, end of first period

day (Fig. 7). Here the peaks shown for traffic at the ends of the first and fourth
periods might suggest altering the room assignments in such a way as to lessen
the traffic through this intersection at these times. For example, he might plan
to have more of the students move from one classroom to another in the same
corridor, without having to pass the intersection at all.

It is probably obvious that a full study by this method of a school's traffic
pattern requires that data be obtained at every intersection for every class-chang-
ing period throughout the day or even the entire week. The school principal, con-
fronted with such a staggering sheaf of graphs, would probably quietly file them
away in the basement or else ask his School Board for an administrative assistant
to "make a study in depth" of a problem which he perhaps never before knew
existed.
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Fig. 7 Bar graph of total daily traffic at one intersection

4. A DESCRIPTIVE MODEL FOR AIRFLOW

Breathing is a complex process. Can we develop a simple model to
represent the behaviour of the respiratory system? In the following example
we consider the flow of the air through the trachea and bronchial tubes of an
animal. From the throat to the lungs, air is carried first through a tube
called the trachea (windpipe). The air then divides through two bronchial tubes
and moves to the two lungs. The arrangement is shown in Fig. 8.

AIR SUPPLY
1

LEFT LUNG

THROAT

TRACHEA

BRONCHIAL TUBES

RIGHT LUNG

Fig. 8 Schematic illustration of respiratory system.
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The model that we develop for this system will be useful for understanding
the breathing activity of animals; for studying the effects of damaged or diseased
lungs; for predicting the effects of clogged bronchial tubes; and for designing
artificial devices to replace any of these elements.

In order to construct our model, we must determine the important
factors which affect the behavior of the system. Clearly we are interested
in the rate at which air flows in each part of the system.

LEFT LUNG

f2

TRACHEA

BRONCHIAL TUBES

RIGHT LUNG

Fig 9 Definition of the flow-rate variables. (f1, aref3, are flow
rates in cubic inches per second or similar units.)

Inspection of Fig. 9 reveals that we may distinguish three different air
flows, which we can label fl, f2, f3. The figure shows the direction in which
the f's are to be measured; for example if

fl = 30, f2, = 32, and f
3

= -2 (all in cubic centimeters per second)

we mean that air enters the upper portion of the trachea at the rate of 30 cubic
centimeters per second, air is entering the left lung at the rate of 32 cubic cen-
timeters/ second, and air is leaving the right lung at the rate of 2 cubic centi-
meters/second (the minus sign on f3 means air is actually flowing opposite to the
direction of the arrow in Fig. 9, since the arrow indicates our convention for
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positive direction).

011-f
Fig. 10 Flow and pressure variables for flow through an inelastic tube

(we make the simplifing assumption that the respiratory tubes
are inelastic).

Fig. 11 Definition of all variables.

To push air through a tube, we must exert a pressure on the air. Air
pressure is often measured in inches of mercury, because the height of the mer-
cury column in a standard barometer is normally about 30 inches (at sea level).
Other units are centimeters or millimeters of mercury (about 76 or 760), or
millibars, often seen on weather maps. Normal sea-level pressure is about 1013
millibars. other unit increasingly used is the torr*: 1 torr = 1 millimeter of
mercury. In this example we use millimeters of mercury, because thus we have
fewer decimal places to contend with. The quantity of air flowing through a tube
(Fig. 10) depends on the pressure difference between pl and p2. The phenomenon
is similar to our home water supply system. When the faucet is open, water flows
through the system from the pumps or water-tower storage to our outlet because
the pressure at the pumps is high (typically 75 pounds/square inch or more) com-
pared to the atmospheric pressure in the basin (about 15 pounds/ square inch). The
greater the pressure difference between pump ar,d outlet the faster the water will
flow.

*Named for Evangelista Torricelli (1608-41), the first to construct a mercury
barometer.
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This relationship between rate of flow and pressure difference in a fluid
makes it possible to describe our trachea-bronchial system quantitatively. We
must express the numerical value of the pressure at various points in the sys-
tem. In Fig. 11 these pressures are shown as p1, p2, p3, p4. In the same
figure we can then observe that the flow f1 through the trachea depends on the
different? in pressure between p1 and p2. In a similar fashion f2 and f3 will
depend on (p2-p3) and (p2-p4) respectively. Our mathematical model of air flow

in the respiratory system should however indicate the exact relationship between
flow and pressure differences in the trachea as well as in the bronchial tubes.
The relationship may not necessarily be the same in these parts of the system
but they must be expressed in the mathematical model.
Development of the Model

We are now faced with the problem of determining the numerical
constants required to complete the mathematical model. Let us consider the
trachea. We know that f

1
depends on (p

1
- p 2), but we need to determine the

relationship in terms of numerical values.

To measure, we anesthetize the animal under test and temporarily
paralyze the system so that the flow of air can be controlled. We then operate
on the animal and insert instruments at the points shown in Fig. 12. The air
flow is measured at the mouth, and the pressure is measured at both ends of
the trachea. Actually we ought to measure air flow in the trachea directly but
in practice it is considerably simpler to make measurements in the mouth, we
assume that the air flowing through the mouth is the same as that flowing through
the trachea.

MEASUREMENT OF FLOW (fl)
MEASUREMENT OF PRESSURE (pi)

MEASUREMENT OF PRESSURE (p2)

Fig. 12 Pressure and flow measuring devices inserted in trachea.
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FLOW IN CUBIC CENTIMETERS
fi PER SECOND

751

50-r
1

25-

TONE MEASUREMENT

-20 -15 -10 -5 0 5 10 15 20
-25

-50

--75

PRESSURE DIFFERENCE
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Fig. 13 One datum point of measured pressure difference for a
particular flow rate.

Air is made to flow at a measured rate, let us say at a value of 37 cubic
centimeters per second, and we measure the pressure at each end of the trachea
at the same time. If the difference between these two pressures is 15 millimeters
of mercury, we can represent this information as a single point on the graph.
(In Fig. 13 we show the experimental quantities graphically, as was done in the
height-weight example.)

If we make a number of such measurements of flow versus pressure
difference, we observe that a straight-line approximation can be drawn which
fits all of the points rather well. The result is shown in Fig. 14.

ft 4

-20 -15 -10

75-

50-

25--

0 5 10 15 20 (11-P2)
- 25-

- 50-

- 75-
Fig. 14 Straight-line approximation for measured characteristics.

Having decided that a straight line fits the experimental points reason-
ably well we can once again find the algebraic equation which is approximately
equivalent to the graphical model. This equation must be of the form
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The line passes through zero on the vertical axis, so that b = 0. To find
a, we pick a convenient point (Fig. 14), say where (p1 - p2) = 10 and find that
f

1
= 25. From this we calculate that a = 2.5, and so the mathematical model

is
f1 = 2.5 (p 1 p2).

Similar measurements yield mathematical models for the bronchial
tubes in the same way. The corresponding equations are:

f2

f
3

= 1.7 (p2 - p3)-

= 1.4 (p2 - 134)
If both bronchial tubes were alike, we should expect the numbers in the

two equations to be equal. In this model, however, one bronchial tube is smaller
than the other. The coefficients 1.4 and 1.7 indicate that the air flow is less in
one tube than in the other for equal pressure differences. These are measure-
ments for a single animal; in a valid study we should measure a number of healthy
animals to determine whether there was a consistent difference between the left
and right bronchial tubes. Disease or damage to the tubes would change these
coefficients.

The complete model for the trachea-bronchi system thus consists of
three measured relationships between air flow and air pressure. In addition, we
recognize that the air flow in the trachea divides in two at the bronchial tubes.
The complete mathematical model for describing the air flow as related to the
pressures at various points in the respiratory system is:

f
1 2.5 (p1 p2)

f2 = 1.7 (p2 - p3)

f
3

= 1.4 (p2 - p4)
f

1
= f

2
+ f

3

Use of the Model
The model can be used directly to determine the flows when the external

pressures (pi at the throat, p3 and p4 at the two lungs) are specified. For example,
we measure pi as 760 millimeters of mercury. At the same time p3 is 730 mm of
mercury and p4 is 750 mm of mercury (the pressure in the left lung is somewhat
lower than in the right lung). The pressure conditions are then as shown in Fig.
15; we want to use the model to find all three flows and the unmeasured pressure
p2.

As matters now stand, the model consists of these four equations in four
unknowns (f1, f2, f3, p2).

Let us first calculate p2. When the known numbers are substituted for
p3, and p4 we have:p1,
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pi = 760 mm Hg

Fig. 15 Pressure conditions measured at throat and lungs. The
model must be used to find the pressure at the bottom of
the trachea as well as all three rates of air flow.

f1 = 2. 5 (760 p2)
f2= 1.7 (p2 -730)
f3 = 1. 4 (p2 - 750)

f
1

= f
2

+ f
3

If we substitute each of the first three equations in the fourth, we obtain

2. 5 (760 - pa) = 1.7 (pa - 730) + 1. 4 (pa - 750)

1900 - 2. 5 pa = 1.7 132 - 1241 + 1. 4 p2 - 1050

4193 = 5. 6 p2

p2 = 748.4 mm of mercury

Now that p2 is known, we can find the three rates of flow

f
1

= 29.0 cu.cm./sec. f
2

= 31.3 cu.cm./sec. f3=-2.2 cu.cm./sec.

The model has permitted us to make relatively simple and straight-forward
determinations of flows for the given pressure conditions, revealing some
important quantities in the system which were not directly measured.

The model is, of course, only an approximate representation of the real
system. After deriving the model, the scientist or engineer would certainly

or

B-3. 16



www.manaraa.com

compare its predicted performance with that of the real system. (If major dis-
crepancies were to appear, then either the model must be improved or a more
complex model must be developed.) Furthermore, he must evaluate how well
the model represents the system in different animals, since the measurements
taken only, on one sample of a population may not be truly representative of
respiratory systems of this structure.

The important point to be observed in this example is that a few basic
measurements on a system which has several interacting relationships can
often give us the means by which we can devise a mathematical model. Once a
model is developed, we can predict the performance of the real system under a
variety of external conditions.
5. DYNAMIC MODELS

The models of the last three sections are simple statements of algebraic
or graphical relationships. They represent static systems in which the relation-
ships between the factors do not change during the time interval involved in our
observation of the behavior of the systems. Very often however we wish to use
the idea of modeling for a system in which the relationships among the various
factors do change during our period of observation. In this section, we consider
examples of such models.

Engineers and scientists use the term dynamic to describe any system
in which change or motion is important. The growth of a person or of a
population of people, the cooling of a cup of coffee, and the functioning of a
nuclear reactor are all examples of dynamic systems. Most of the interesting
systems are dynamic; we live in a world characterized by increasingly rapid
change.
6. A POPULATION MODEL

It has been estimated that since the appearance of man on the earth, a
total of 15 billion human beings have existed. With a world population of nearly
3 billion today, 20% of all the people who have ever lived are alive today. Our
population is obviously growing at an explosive rate.

Demography, or the study of population, is of increasing concern to
economists, sociologists, political scientists, engineers, and many others who
must understand the present and plan for the future. Models of population
change are exceedingly important to such study, for they make possible analysis
and prediction which can lead to more effective planning for the many goods and
services that people need.

Suppose that we wish to obtain a simple model which would let us estimate
the world population at some future date. The present average rate of population
increase for the entire world is estimated to be close to 2% per year, and we as-
sume in this section that this rate of increase does not change. In 1960 the world
population was approximately 3 billion (that is, 3 followed by 9 zeros, or 3 x 109).

If the rate of increase is 2% per year, then in 1961 the increase is
0, 02(3, 000, 000, 000), or 60, 000, 000 more people, making a total of 3, 060, 000, 000.
We can then calculate the increase for the next year and for all succeeding years.
A table of the results is shown in Table 2.

We see clearly that since a constant percentage of the year' s starting
population is taken and that the population is larger each year, the numerical
increase becomes continually larger. In fact, if we were to compute values for
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YEAR
POPULATION AT
START OF YEAR INCREASE POPULATION AT

END OF YEAR

1960 3, 000, 000, 000 60, 000, 000 3, 060, 000, 000
1961 3, 060, 000, 000 61, 200, 000 3, 121, 200, 000
1962 3,121, 200,000 62, 424, 000 3,183, 624, 000
1963 3, 183, 624, 000 63, 672, 480 3, 247, 296, 480
1964 3, 247, 296, 480 64, 945, 930 3, 312, 242, 410
1965 3, 312, 242, 410 66, 244, 848 3, 318, 487, 258
1966 3, 378, 487, 258 67, 569, 745 3, 446, 057, 003
1967 3, 446, 057, 003 68, 921, 140 3, 514, 978, 143
1968 3, 514, 978,143 70, 299, 562 3, 585, 277, 705
1969 3, 585, 277, 705 71, 705, 554 3, 656, 983, 259

Table 2 Estimated world population, 1960 to 1969.*
the table far enough, we should find that by the year 1995 (less than three decades
away), the predicted population would be six billion; that is, the population would
double in about 35 years . Carrying the calculation further, we should notice
that this doubling occurs every 35 years. This would be true for any population
number we start with so long as the rate of increase is exactly 2% per year. If
the rate of increase were 3%, the doubling would occur in 23.5 years. A 3%
rate of increase would cause the population to increase by a factor of 2.81 in
thirty-five years instead of by a factor of 2. We have merely restated the same
fact in a different form.

There is a simpler way of expressing these results using a special symbol
EA (called "sigma," a letter of the Greek alphabet). This symbol stands for

summation, (i. e. , addition); since we have been adding or accumulating the popula-
tion increase each year, the last column in our table can be calls d a column of
summations. A shorthand way of indicating the procedure for computing the
population for the third year is to write:

Total population Population at + increase in 1960{}
at end of 1962 beginning of + increase in 1961

1960 + increase in 1962
Total population Population at The sum of the increase{}
at end of 1962 = beginning of + in 1960, 1961, and

1960 1962

Using the summation sign NV e can write even more compactly: Total population
= initial population + E (increases in 1960, 1961, and 1962).

If we let P be the symbol for the total population; Po be the initial value
of the population at the beginning of 1960; and pi be the population increase for
the year represented by the subscript i, we can write the entire expression as:

1 2
P = Po + Pi

19 0
In other words, the total population at the end of 1962 is the initial value plus
the sum of the increases for each year: 1960, 1961, 1962.

*Compare with these estimates: in July, 1967, the Population Reference Bureau
used UN and other statistics to estimate that in the summer of 1966 world popula-
tion was 3.34 billion, an increase in one year of 6 5 million.
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From our table we can substitute the appropriate values into the above
equations:

P = 3,000,000,000 + (60, 000, 000 + 61,200,000 + 62, 424, 000)
= 3,183,624,000.

Are these numbers that out equations produce really accurate? Consider for
instance the entry in Table 2 for the population at the beginning of 1966. The
model predicts exactly 3,378,487,258 people which is a precise value. We have,
however, ignored tha fact that the numerical values with which we started were
only approximations; the 3 billion initial population was a rounded number, and
the 2% was an estimated average growth rate. If P was exactly 3,000,000,000
and the rate of increase was exactly 2.000,000,000% then we should obtain 10
meaningful digits in our answer. But since precision was lacking in our measure-
ment of both the starting population and the rate of increase, the results can have
only a limited number of significant figures. We must, therefore, be content to
use rounded numbers. The extent of precision when two numbers are multiplied
is restricted by the number with the smaller precision. If in this case it is the
2% figure, and we assume that we are certain of its value to three significant
figures, (i.e., 2.00%), then the rounded number having acceptable accuracy is
not 3.378487258 billion but only 3.38 billion.

If we continue our example with a 2% rate of increase, we find that in the
year 2060, just one hundred years from our starting date, the calculated popula-
tion will be nearly 22 billion, and by the year 2160, it will reach the enormous
sum of 157 billion! With a doubling of population in 35 years, the growth after
two centuries results in a population which is more than 50 times the original
population.

We have already observed that a graphical plot of data can quickly and
easily reveal relationships that may be difficult to observe in a table of numbers.
We now construct such a plot and introduce some variety with a new table; one
which displays the average population predicted for the beginning of each decade
from 1960 to 2060 in rounded numbers as in Table 3.

As a matter of convenience, we have used the population for the first year
of the decade, although the actual number continually grows. In the United States,
where a census is made every tenth year, the count obtained is often considered
to be the legal population until the next census is completed, even though the Cen-
sus Bureau issues an annual estimate of the current number of our people. These

DECADE POPULATION
(IN BILLIONS)

1960-1970 3.00
1970-1980 3.65
1980-1990 4.46
1990-2000' 5.44
2000-2010 6.64
2010-2020 8.04
2020-2030 9.86
2030-2040 12.0
2040-2050 14.7
2050-2060 17.9

Table 3 Estimated world population., average for each decade,
1960-2060.
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values are plotted as a bar graph in Fig. 16. The height of each vertical column
is proportional to the population total for that decade as given by the table. It is
interesting to notice that not only do the heights of the bars go up in each ten
year period, but that the steps become increasingly larger.
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Fig. 16 Estimated growth of world population

2060

But there is a more significant aspect to this graph. It looks as though a
reasonably smooth average line could be drawn to connect the tops of the bars,
just as in the earlier height-weight model it was possible to draw in a straight-
line average which provided a fairly good fit to all of the datum points. In
Fig. 17 the top left corners of the bars in Fig. 16 (i.e., the population esti-
mates for the first year of each decade) are plotted, and then joined by a smooth
curve. This gives, of course, only an approximate model of the real situation,
because the growth fluctuates irregularly from year to year*.

*It might be argued that it is, strictly speaking, improper to draw such a curve
at all. In mathematics, a curve on a graph represents a continuous function,
meaning that between any two points on the curve, no matter how close together
they may look, there is actually an infinite number of other points. But a popula-
tion is a step-function: it can change only by whole numbers, and from this point
of view should properly be shown only by a series of bar graphs side by side, one
for every day or every hour or every minute or If such a graph could really
be constructed (and obviously it could not, because information is lacking), the
upper ends of the bars would be found to end in a sort of jiggly manner, because
the change in population, even from one millisecond to the next, is not quite
regular. But when inspected from a distance of a few yards, the irregularities
would tend to fade from view. We may justify, drawing a smooth curve for what
is in truth a step-function, then, by maintaining that we have shown how the latter
would look from a little way off. From a slightly different point of view, we may
look at the curve as a kind of best guess, justifiable as a way to get ahead with the
discussion in such a case as this one where the uncertainties of measurement, the
gaps in our knowledge, are without doubt at least as great as the fluctuations which
the true value of world population undergoes.
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Now the extremely fast growth of population is quite clear. It is important
to notice that even though the percentage increase remains constant at 2% per year,
the continually larger increases each year produce a curve which becomes steeper
and steeper. This curve is different from those we found in our previous models.
The previous plots were linear. The population curve of Fig. 17, however, is
not a straight line; it is non-linear.

Furthermore, this is a particular kind of non-linear curve. It was pro-
duced by a set of numbers in which each new value of the variable is obtained by
adding a constant percentage of the previous value to that particular value. We
have a growth that is proportional to the accumulated size; "the bigger it gets the
faster it grows". This snowballing relationship is call exponential, and the curve
of Fig. 17 is therefore known as an exponential curve. This is a very important
non-linear curve; it represents a model which is encountered very frequently in
nature and in engineering; we find other examples of it later in this chapter.
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Fig. 17 Fitting a smooth average line to the population

growth graph.

We now consider another plot of population increase, from 1700 to 2165.
This is shown in Fig. 18. The eye tends to follow the curve upward to the right;
but it is also important to be aware of the fact mat the graph drops as we look
along it to the left, or as we go backwards in time. In fact, prior to 1800, the
height of curve on the scale of this graph is so small that it is difficult to measure
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its value. This reflects the fact that a "population explosion" has occurred: the
population of the earth in the past was extremely small relative to the present
population. The curve makes more reasonable the earlier statement that approxi-
mately 20% of all the people who have ever lived are alive today. From a larger
scale copy of the curve we could find the even more striking fact that the popula-
tion increase from 1940 to 1963 (just 23 years) is greater than the total estimated
population of the world in 1800!

Suppose now that we continue to calculate the population to the year 2700,
a period only slightly more than 700 years from now. This represents about the
same time difference as that between the present and the time of Marco Polo.
The graphical results of the computations are shown in Fig. 19.

Fig. 18 The growth of world population from 1700 to 2165.
Prior to the present time the curve is a reasonable
representation of historical fact. Later values are
predicted from a model.
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Fig. 19 Modeling prediction of world population to the year
2700.

Can this really be expected? The curve shoots up at a fantastic rate.
Notice that the vertical scale on the left is much larger than that in the preced-
ing figure--so much so that the steeply rising curve to the year 2165 (Fig. 18)
is now compressed to a degree that permits no measurable value. Our new
exponential curve has reached such proportions by the year 2700 that if we tried
to plot it on the scale of Fig. 18 it would require a sheet of paper twenty-seven
thousand times as high, or 11 thousand feet (more than 2 miles) high instead of
5 inches.

What does this curve of Fig. 19 tell us? By the year 2510 we should
expect to have a world population of nearly 200, 000 billion people, by 2635
about 1, 800, 000 billion people; thirty-five years after that it will have doubled
to approximately 3, 600, 000 billion; and in the year 2692 the model predicts a
5, 450, 000 billion population.
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How large is 5, 450,000 billion? We can express it in many ways. The
number when written completely would appear as:

5, 450, 000, 000, 000, 000

It may be written as 5.45 x 10 5, but one doesn't get a good "feeling" for the
enormous size.

Here is one picture that helps to visualize the magnitude of the number.
There are roughly 31 million seconds in each year; If we counted one thousand
persons per second it would take us

5.45 x 1015 (people to be counted) 5x10 years.
103 x 31 x 106 (counts per year)

That is, it would require about 176, 000 years to complete the census!
There is yet another way to grasp the significance of this estimate of

5, 450, 000 billion population. Let us ask where these people will be; how much
room will they have? The surface of the earth contains approximately 1,860,000
billion square feet. About 80% of this area is covered by water, but let us sup-
pose that all of the surface were land. We can calculate that in the year 2510
when the population is 200, 000 billion there will be

1,860, 000 (billion square feet) = 9.3 square feet per person
200, 000 (billion persons)

or about one person per square yard all over the earth. Worse yet, in 2635
each person will only have one square foot in which to stand, and in 2670 if
they insist on retaining that much real estate they will be standing on each
others' shoulders two deep. And only 22 years later they will be three deep.
Now, if we do not assume treat these people can tread water but instead must
occupy the land area only (1/5 of the total area, ) then in 2692 we should expect
to see totem poles 15 persons high on every square foot!

7. AN IMPROVED POPULATION MODEL

Obviously the model we developed in the last section is incorrect.
Beyond a certain point at any rate it leads to impossible conclusions. Quite
clearly there must be some limiting factors which will prevent a population
increase to a value that is ridiculous. Actually the model is too simple, because
we did not take into account several important factors that tend to limit our pre-
dictions.

To learn more about these factors, it is helpful to examine functional
models of the world population. Such models are easy to find in a biology laboratory.
Any small organismthat reproduces rapidly will do. Fruit flies, yeast, bacteria
P,re commonly used examples . Here we describe a population model using yeast.
First the experimenter must prepare a food supply, a "nutrient medium". For
many yeast species this may be simply a weak sugar syrup slightly modified by
addition of other substances. Then there is need, obviously, for a jar in which
to keep the yeast as they gorge themselves, and for Adam and Eve, so to speak;
the syrup must be inoculated with a few yeast cells to start with. It is perhaps
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not so obvious that the temperature should be kept constant, nor that the medium
should be gently but constantly stirred.

It is hardly possible to take a census of yeast cells as one does of people.
Instead, a sampling technique is used. Knowing the starting volume of his experi-
ment, the investigator can withdraw a definite, very small, percentage of it and
count the yeast cells in that. Since the solution of food has been stirred, he can
safely assume that his sample is typical, and that he can simply multiply by the
proper factor to learn the total population. Such models as this one are particu-
larly convenient because they take up very little space; moreover, it is easy to
try different circumstances ("to vary the parameters", as the professional puts
it). It becomes possible to answer such questions as these: What is the rate of
increase of population when the experiment begins? Does this rate remain con-
stant as the population becomes larger? Does it matter whether the available
space for the organisMs remains constant or is made to increase as the population
grows? Yeast cells produce an alcohol (there are many kinds of alcohol) from
the sugar they consume; what is the effect of leaving the alcohol to accumulate in
the nutrient medium? of removing all but a constant fraction? of removing all of
it as it forms? (Removal can be rather easily accomplished by continually pump-
ing fresh nutrient medium in and at the same time allowing the used medium to
trickle out through a filter).

Which of these possible experiments cast light on our graphical model of
world population? First, we know that the entire land surface of the earth is not
inhabited but that it is not unlimited (there is room for population to increase but
the space will be used up some day). This is modeled in the yeast case by using
bigger jars (and more medium) up to a certain point but then no more. Second,
we know that food production can be increased for human beings but not without
limit. We can supply more sugar to the yeast on a schedule that we think is com-
parable to the future history of the world; even better, we can try many schedules.
In short, we can test our model and thus refine it, by comparing it with what we
already know about the course of development of the human population.

Now it turns out that such experiments as those described are practically
always alike in one feature. Growth is roughly exponential at first; the rate of
increase is not necessarily constant, but th.:1 population curve is closely similar
to that of Fig. 18. However, if the experiment lasts long enough the rate of
growth sooner or later begins to lessen and in time reaches zero. The curve
stops its exponential growth, trends to the right more and more, and tends to
level out, as suggested in Fig. 20. Because this curve has a kind of S-shape
it is known as a sigmoid (from the Greek letter S, which is called sigma).

The basic reason for the change of shape shown is overcrowding. With-
out unlimited space in which to grow, and unlimited food to support life, the in-
dividual yeast cell has neither room nor food to allow it to reach normal size. No
doubt there are other reasons, but they are less important.

It is interesting to know that the sigmoid shape is found in many other kinds
of growth cases. For one example, if a coil of wire is wound around an iron bar
and a slowly increasing electric current is sent through the coil, a graph of the
magnetism induced in the bar plotted against the current shows the same general
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TIME

Fig. 20 Population growth in laboratory studies.

behavior: the bar's magnetism grows for a time and then the curve flattens out;
the bar is said to become saturated, after which its magnetism can become no
stronger (though the total magnetism does, because the current in the coil has
its own magnetism independent of that in the bar).

Perhaps the first man to recognize the sigmoid character of population
growth (though he did not express it in this way) was Thomas Robert Malthus. He
was an Englishman who lived from 1766 to 1834, and who wrote a gloomy essay
pointing out that a time must come when population will outrun food. Then the
growth of population would be stopped, he believed, by wide-spread epidemics,
or starvation, or war, or some combination of these. Instead of a truly sigmoid
curve, however, his curve would probably actually turn downward. He predicted
that the end of the growth period would come during the nineteenth century. That
it did not was owing to the discovery of chemical fertilizers; with these an acre
of ground will bring forth several times as much food as was possible in Malthus'
day. We can see, however, that some limit, at some time, must be reached in
the number of pounds of food that can be won from an acre of ground; that the
supplies of potash and phosphate easily recovered must someday disappear, so
the cost of fertilizers must rise (the third major fertilizer element, nitrogen, is
available without foreseeable limit from the air); and hence that Malthus may yet
prove to be right. The end may be less gloomy, however, if the practice of family
limitation, birth control, is ever adopted in the parts of the world where the growth
rate is even now excessive - up to 4% a year.
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It is not very difficult to take the algebraic expression for population
growth that was written in the last section and modify it to a more general form;
this general equation can then be modified again into another one which, when
plotted, turns our population-growth curve into a sigmoid. However, it may
be argued that to show all this here would be to plant so many trees, so to speak,
that the forest would be hidden. Since we care chiefly about the forest, we leave
the trees in the nursery.

8. USES OF POPULATION MODELS

Predictive population models are often used with great success in govern-
mental planning all levels -- town, state, and federal. For example, the design
of a suitable transportation system for a region of a country requires that the
engineer have available reasonably reliable predictions of population distribution
in order to assess future transportation needs (for transporting people and the
materials which people require).

In such a problem, the complete system model includes population models
for hundreds or thousands of separate towns. The complete model is often a
mathematical model composed of many equations. Some of these are similar to
the equations we have used and some are more complicated. Not only must birth
and death rates (net growth) be considered, but the relationships among other
factors must be included. There are also influences which make the populations
of towns interdependent. If one town becomes unduly crowded, there is a strong
tendency for neighboring towns to grow more rapidly. Immigration and emigra-
tion rates thus are important considerations for the development of an accurate
dynamic model, i. e., a model in which the interrelationship of factors changes
with time.

Then too, in a population problem of this sort, the engineer has a multiple
responsibility: he must formulate the model, decide which factors are to be in-
cluded, guide the collection of essential data, interpret the results of the model-
ing studies in terms of recommended developments, and finally evolve a plan
which takes into account the technical solution suggested by the model studies
and at the same time the economic, political, and social constraints -- all of
which may place limitations on the adoption of the complete technical solution.

9. MODEL APPLICABILITY
Many Models for One System

It is possible for one system to be represented by a number of different
models. As inthe case of the blind men and the elephant, no one model describes
the real thing completely, but separate models of sub-systems are often necessary
and useful.

Consider an air-conditioner. One model can be developed which is based
on heat flow; how heat is extracted from a room; how the fluid in the unit changes
its temperature as it absorbs heat; and how this heat is then transferred outside
of the room. This model must include such factors as expected temperature
ranges, the characteristics of the refrigeration unit, blower, and intake and
outlet duct air flows.
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Another model to describe the same system might be a control model
which includes the thermostat, the various relays and contacts, and the electrical
network which links the electrical parts of the system.

Yet another model of an air conditioner could be developed for a study of
its mechanical behavior. For example, we may wish to know how much
noise and vibration the equipment will produce and how to design the air conditioner
to minimize the noise and vibration. For this objective the model would include
a number of factors such as the characteristics of the moving parts, their
mountings, the location of shock absorbers, and the geometrical arrangements of
the openings, the absorbent surfaces, and the baffles.
One Model for Many Systems

What is there in common between the way in which a cup of coffee cools,
the way in which the numbers of chain letters increase, and the way in which a
human head grows? Just as it is possible for one system to be described by
several different models, so one model frequently is applicable to many kinds
of systems. In Fig. 21 there are models of three different processes which
one would not ordinarily think of as being similar. In (a) is shown how the
temperature of a cup of coffee drops as the coffee cools to room temperature.
The initial temperature is just below the boiling point. It drops rapidly at the
start, then more and more slowly. After a half hour, the temperature of the
coffee has dropped to within a few degrees of room temperature.

The illustration in (b) describes a system in which the production of an
item doubles at each step. During the early part of the curve the values are
not readily observed because of the scale of the graph axis, but as the number
of steps goes from 1 to 2 to 3 to 4, the number of items increases from 2 to 4

to 8 to 16. The increases become larger with each step; for instance in going
from 9 to 10 steps the number of items doubles from 512 to 1024. This is a
model for the chain-letter process, where an individual writes to two people,
each of these writes to two others, and so on. After 20 steps in such a process
the number of letters (items) being written is more than one million, and after
30 steps the number becomes greater than one billion.

Fig. 21(c) shows how the size of a human head grows from birth to age
20. At birth it is a little less than 1/4 its full size, and it is growing very
rapidly. At the age of 5 the growth begins to slow down appreciably, and at the
age of 15 the head is within a few percent of its ultimate size.

We can see what is common to the cooling of a cup of coffee, the rate of
increase in a chain letter situation, and the growth of the human head. Each
displays an exponential rate of change. In each of the processes, as in the
population expansion, growth either increases or decreases exponentially. The
change at any step is determined by the value just prior to that step.

Our exponential model thus fits many systems. Such things as the rate
at which an automobile coasts to a stop, the growth of plants, and the accumula-
tion of bank interest, can ).also be represented by an exponential model.
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Fig. 21 Three examples of exponential systems.
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10. MODEL EQUIVALENCE
Models can be formed with symbols, such as words and numbers, or may

be constructed with computers, electric circuits, or hydraulic, mechanical, or
chemical systems. A model can be constructed which is equivalent to a conceptual
model, so long as the behavior of the model duplicates the behavior of the real
world system with an accuracy sufficient for the purposes at hand.

This idea of equivalence can be understood in terms of what engineers
call a "black box". They begin by considering that a real world system is a
black box whose interior structure is unimportant, only the inputs and the out-
put are essential facts. The relationship between the input and output signals
defines what the system does--changes occur at the output of the black box as
various signals are applied to the inputs, what is inside this or any other black
box is immaterial so long as the input and output are related as in the real
world.

If we consider a real nerve cell, with its many complicated stimulus-
response relationships, we can devise many black-box equivalents. As long as
the output signals change appropriately with specified input signals, it is im-
material whether what resides within the black box is a real nerve cell, a string
of words, a graphical plot, a programmed computer, electronic circuits,
hydraulic or chemical systems, wheels, gears, and levers, or green cheese
(working models made of the last material are uncommon).

Mathematical models are the most general and the most flexible. They

provide a compact, precise means for describing, analyzing, and predicting.
Very often the mathematical operations required for a particular system be-
come quite complicated, as in the case of the transportation-population example,
where large numbers of interdependent equations must be solved simultaneously.
For such complex mathematical models computers are often used to manipulate
the equations. Their speed, accuracy, and flexibility make possible rapid
solutions. Furthermore, computers permit the various numerical factors used
in the model as well as their relationships to be changed to permit a study of the
properties and to predict the outcome of many different versions of the model.

When a digital computer or an analog computer (which is discussed
in the next chapter) is programmed to do the calculations required by a mathe-
matical model, the computer then becomes the working model itself; we call
this coi_pri uter -simulation. By representing the mathematical expression of a

real world system, the computer literally is a functioning model of that system.
Thus a computer can be a model of a cup of coffee, of world population, or of

an air conditioner.

Sometimes a real world system is so complicated that it is not convenient
or even possible, to construct a sufficiently accurate mathematical model or to
produce a computer simulation of the situations. In such cases it is often pos-
sible to use electrical circuits or to construct mechanical devices or hydraulic
or chemical systems which represent the thing to be modeled. Some examples
of this alternative are discussed in succeeding chapters.
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11. SUMMARY

In this chapter we have considered certain basic aspects of the subject
of modeling. The primary objective of the chapter is to focus attention on a
theme which runs through a large portion of this course: the point of view that
understanding in the scientific and engineering sense comes through simplified
versions of reality called "models".

Finding an effective model often begins with observations or measure-
ments of a real situation. Sometimes, it begins with an inspired guess. In any
case, the model describes or represents what are considered to be the essential
elements of the real situation. Models are useful because they enable us to
think rationally about complicated situations, because they permit us to predict
future situations and to plan for them; and because they enable us to build and
produce man-made devices, systems, and processes to extend man's natural
abilities. Finally, there is evidence that human perception and thought are
based upon the formulation of models in the human mind.

PROBLEMS

3 - 1 A more modern version of the six blind men and the elephant is suggested
by the following problem. A printed capital letter of the English alphabet
is scanned photoelectrically and the resultant signal is converted into
digital form and read into a digital computer. Seven subroutines in the
digital computer inspect it. The first states that the letter is like a U be-
cause it has at least one pocket to hold rain coming from above; the second
shows that it is like a K because it has at least one pocket to hold rain
from below; the third and fourth find that it is like an A because it has
no pockets on right or left; the fifth shows that it is like a V because it has
two ends; the sixth shows that it is like an. S because it has no junctions;
the seventh shows that it is like a D because it has two corners. Combin-
ing these seven models of the letter, determine what it is.

3-2 Let us approximate a human body by a cylinder. Since the proportions
of the body stay relatively constant as it grows, a tall cylinder will have
a larger diameter than a short one. We assume that the height of the
cylinder is always 7 times the diameter. Thus, the cylindrical approxi-
mation of a 6-foot man will have a diameter of 6/7 foot and a volume of
Trr2h, or about 3. 5 cubic feet. The human body is about 60% water and
weighs about the same as an equal volume of water would. Water weighs
62.4 pounds per cubic foot, so the 6-foot equivalent will weigh about 216
pounds.

a. Compute the weights for equivalent cylinders whose heights are 2, 3,
4, and 5 feet. Plot the results, including 6 feet, on a graph showing
height versus weight.

b, What kind of curve is this? How does it compare to that of the straight-
line-average fit of Fig. 3? Discuss any discrepancies and the validity
of the earlier model in light of the new one.
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3-3 A paint brush has just been used and the owner wishes to clean it. After
the brush has been scraped against the side of the paint can, it still con-
tains 4 fluid ounces of paint. The owner dips it into a quart (32 fluid ounces)
of clean solvent and stirs well until the diluted paint solution is uniform.
After draining, the brush still holds 4 fluid ounces, part of which is paint
and part solvent, since the diluted solution is uniform. The process is
repeated with a fresh quart of solvent.

a. How much paint is left in the brush after 5 solvent baths?

b. Prepare a table and plot a curve of the amount of paint remaining after
each rinse. What kind of curve is this? Will the paint brush ever get
completely clean? Why or why not?

3-4 A man receives his weekly salary of $150 every Friday and in paying his
various obligations spends half of the amount he has in his pocket each day.

a. How much money will he have left on the following Friday?

b. Sketch a graph of his current funds versus the day of the week.

c. If he received $300 every other Friday, would he be in better or worse
shape on the next payday, assuming that his spending habits remain
the same?

3-5 You are -served a hot cup of coffee at 200°F and a cold container of cream
at 40°F, and you do not intend to drink the cee for 10 minutes. You
wish it to be as hot as possible at that time,;7 Assume that the coffee cools
as shown in Fig. 20(a) and that the cream container stays at the same
temperature.

a. Determine the temperature of the coffee at t = 5 and t = 10 minutes.

b. If a volume V1 of coffee at temperature T1 is mixed with a volume
V2 of cream at temperature T2, assume that the temperature of the

T
1
V1 + T

2
V2

mixture is: . What will the temperature of the mixtureV1 + V2
be if 1 fluid ounce of cream is added to 6 fluid ounces of coffee at t =
10 minutes?

c. Now assume that the cream is mixed with the coffee at t = 0. What is
temperature To of the mixture at that time?

d. The cooling curve for the mixture is similar to that of Fig. 20(a) ex-
cept that it begins at the new temperature To as calculated in part (c)

T0-75
above and it always lies 200- 75 of the distance to the given curve from-
the straight line showing room temperature (75°). What will be the
temperature of this mixture at t = 10 minutes?

e. Will a hotter cup of coffee result from adding the cream first or later?
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3-6 The half-life of radioactive decay is the time in which the amount of the
given radioactive material decreases by a factor of two. Radioactive
carbon-14 has a half-life of 5700 years, but let us assume that it is 5000
years in this problem to allow simpler calculations. Carbon-14 is created
by the action of cosmic rays on the carbon dioxide in the atmosphere, and
the amount remains constant with time. Growing plants, and the animals
that eat the plants, absorb carbon-14 during their lives, but the process
stops when the plant or animal dies. Radioactive decay then causes the
relative amount of carbon-14 to decrease. Measurement of the radio-
activity of fossils permits an estimate to be made of the time at which they
died.

a. What fraction of carbon-14 will remain in a sample after 50,000 years?

b. Approximately how old is a fossil bone in which the amount of carbon-
14 is 1.0% of its initial value?

c. Sketch a curve showing the fraction of carbon-14 left in a sample as
a function of time.

3-7 Experimental data on the growth of a
population of yeast cells are given in
the accompanying table.

a. Plot a graph of the number of
cells versus time in hours.
What is the population at 9
hours?

b. The shape of the curve is
exponential at first as the cells
multiply, but it soon levels off
as the supply of food becomes
limited. The curve is called
a sigmoid. What would you estimate the population to be at 30 hours?

LTime
hour s )

Number of
cells

0 6--
2 10
4 48
6 117
8 234

10 342
12 397
14 428
16 438
18 442

c. Although your estimate may be an accurate one, based on the tabular
model above and its graph, it is probably not correct in the real life
of a yeast colony. If the table were continued, it would show that the
population decreases somewhat as the environment becomes poisoned.
During what time intervals is the rate of growth a maximum? A
minimum?

3-8 List and discuss some systems like the air-conditioner example which
can be described by several different models.

B -3.33



www.manaraa.com

Chapter B-4

MODELS AND THE ANALOG COMPUTER

1. INTRODUCTION

What is the most important property of motion that a drag car
racer must understand in order to be first at the finish line? How can we
describe the motion of an automobile as it travels from one city to another?
What terms do we use to express how fast it is going and the distance
it covers in a given time? How does a captain maneuver his ship when he is
attempting to moor at a pier? What must he understand about increasing
and decreasing speed so that he can move properly for docking? What concepts
of motion must an astronaut understand to control his capsule in safety?

All of these situations are dynamicthey involve motion and
change. Moreover, they have so many similarities that it is conceivable
that we can describe their behaviors with slight variations of the same model.
We can invoke the concept of "one model for many systems" which was
vividly displayed in Chapter B-.1, for the exponential model. We may go
further and propose the development of .a functional model which, though
different in physical form, would be exactly analogous to all of the above
situations. Imagine the intellectual and economic advantages of a method
by which we can study many different man-made systems with a single
functioning model.

These aspects of modeling are of great importance. Our purpose
here is three-fold: (1) to illustrate once more the concepts of 5dynamic modeling,
this time with models of moving systems, (2) to illustrate clearly the method
an engineer or scientist uses to derive a model for a real situation and (3)
to examine how modeling the real world enables the engineer or scientist to
note many similarities among different systems and enables him to discover new
techniques for analyzing and controlling their behavior. In order to accomplish
this objective we will attempt to bring into focus the meaning of inputs and
outputs of models and the means by which we describe them; the concepts of
position, velocity, and acceleration and their interrelationship, and the distinc-
tions among various types of models.

2. SIGNALS, INPUTS, AND OUTPUTS

The examples in Chapter B-1 indicate that models can be discussed
in terms of inputs and outputs. For example, in the trachea-bronchi system
of Section 4 of Chapter B-3 the input is the pressure difference and the flow of
air represent the output. Such inputs and outputs are described in terms of
signals.

A signal is usually the numerical value of an input or an output:
Thus: the total population is 15 billion, the temperaiure of the coffee after 15
minutes is 100°, etc. are input or output signals. Sometimes these values are
listed in tabular form (as in Table 3 of Chapter B-3); more often they are given
in graphical form (as in the bar graph of Fig. 16 or the exponential curves
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of Figs. 18 and 19, all of Chapter B-3), or they may be given as equations.

One of the most interesting properties, common to many of the
signals that we have discussed, is that they change with time. For example,
the coffee temperature decreases; the height of a man increases; the population
ttexplodes." Whether we try to understand the operation of a man-made system
or we attempt to design such a system, we are customarily interested in the
manner in which the signals into and out of the model of the system. change
with time.

Two very familiar signals whose values change with time are
velocity and acceleration. These signals describe how the position of a
body changer7717tE=me. Thus, they are known as signals of motion and are
important in models of systems of the man-made world TE.=h th parts
change their relative positions with respect to each other. The study of motion
will develop the meaning and the utility of model construction based on the
concepts of inpu4output, and signals, as well as introduce methods of modeling
real world systems which are undergoing complex changes.

3. SIGNALS OF MOTION

What is the meaning of motion? Motion is a concept with which
we become familiar at an early age. We walk to school, we run to first base,
we swim several lengths of the pool. Thus, one very important aspect of
motion is "getting from one place to another". Ira other words, to achieve
motion we must change position.

To describe the position of an object is, however, not a simple
task. To describe the exact position of a car, for example, would require
several signal values to locate the car on the surface of the earth. Obviously
we require a statement of the latitude and the longitude (or the distances east
and north of a specified location). In addition, we need the altitude (in case
the car is above or below sea level). After these three values are known the
car is precisely located with respect to the surface of the earth.

The position signal may also include the orientation of the car
at the above location. In which compass direction is the car headed? How much
is the car turned through a leaning angle? To what extent is the car pitched
(e. g. , rear up and front down)? These three additional components of the
signal are necessary to describe the orientation of the car which is located
at the point in space determined by the first three parts of the signal.

Thus, the complete description of the car's "position" at any
given instant of time requires six signal values. Only when all six are known
do we have an accurate description of the location of the vehicle. Fortunately,
in studying the motion of cars, we are often interested only in one or two of
these signal components. For example, if the car is moving along a straight
highway toward the north and we are not interested in the rolling or pitching
of the passengers, the complete signal is expressed by the one component:
the north-south location. The signal at any time is then described by a
single number (the distance from an agreed-upon starting point).
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One of the primary reasons for the complications in the study of
spacecraft motion is that it often requires all six components. All six change
with time, and the change of any one (for example: .a change produced by the
firing of a thrust rocket) results in changes in the other five signal components.

In this section (and indeed in this book), we consider only very
simple situations, and, in particular, those which can be studied without the
need for large digital computers to perform the necessary calculations. In
the remainder of this section, the discussion relates only to a signal described
by the position of a body along a fixed route (for example, the north-south
highway). Other motions are discussed in Chapter B-5.

In the case where the position is described by one signal value, the
numerical representation of the signal requires agreement on the reference
position (the point at which the signal is zero) and the direction in which the
signal is to be considered positive (the opposite direction then being negative).
For e-4..ample, in Fig. 1, we are interested in travel along the line ABC. If
we arbitrarily measure distance along this line from B and arbitrarily choose
the positive direction toward A, we can specify the value of the signal in miles
from B. A is located then at + 20, B at 0, and C at -15.

C

Fig. 1 The position of signal
interest

C B A
I I I

-15 0 +20

Fig. 2 Redrawing of Fig. 1.

If north is at the top of the page, the figure indicates that the
allowable path of the object is northwest-southeast. This orientation is,
however, of no interest to us; we are concerned only with the location along
this path. Hence, for simplicity it is customary to draw the path as shown
in Fig. 2, where A corresponds to a signal value of + 20 miles, C to a
value of -15 miles. The position signal (to which we can give any convenient
symbol (let us say x) then may vary from -15 to +20; we call this signal "x"
the displacement (meaning the distance the body is displaced from the position
x = 0).
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We Lan now discuss the displacement x as the signal of interest.
In general, x varies with time, perhaps as shown in Fig. 3. Here we have
plotted x (displacement) versus t (time) where x is measured in meters

(METERS)
5

Fig. 3 Displacement signal.

t (SECONDS)

and t is measured in seconds. The fact that the complete signal is described by
only one curve (Fig. 3) means that the motion is in only one dimension; towards
or away from the point x = 0 along a single line.

If, instead of drawing the curve of Fig. 3, we were to attempt to
describe the signal in words, we might say the following: The displacement
x starts at time t = 0 at a point +3 meters from the point x = 0. This dis-
placement increases to a maximum of slightly more than + 4 meters at 1.
seconds after the start, then decreases to zero displacement at t = 2.4
seconds. The object now moves to a maximum displacement in the opposite
direction at t = 3. 7 seconds. Can you continue this description? The graph
is an efficient way to communicate information about the variation of a signal.
The axiom "a picture is worth a thousand words" is particularly appropriate
when the information is a signal varying with time.

Velocity

While the position signal is completely described by the graph of
Fig. 3, it is more informative to describe the system not only in terms of the
position of the object at a given time, but also in terms of its velocity at any
instant, that is, the speed and direction in which it is moving. For example,
if the statement is made that "at t = 2.4 seconds, x = 0", we know only that
the curve passes through zero at this time. There is no indication of what
the value of the signal is likely to be a fraction of a second later.

On the other hand, a much more meaningful statement is: "at
t = 2.4 seconds the displacement is zero and it is changing at the rate of
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-22 meters every second"; that is, the object is moving to the left (since the
velocity is negative) at such a rate that in one second it will be 22 meters
further left if its velocity remains constant. In other words, the velocity,
indicates how ra idl and in what direction the dis lacement sinal is chant
in g. The velocity indicates quantitatively the very important property of
friite of change of the position of an object".

Definition of Velocity Graphically

We have defined velocity as the rate of change of displacement.
If a displacement signal is changing at a constant rate (as in Fig. 4), the
velocity is simply equal to this rate. In Fig. 4, for example, the dis-
placement changes by + 1.5 meters (4.5 to 6) in every two-second interval
(with the graph for example, from t = 6 to t = 8 seconds). Since this is true
for any 2-seconds interval which we may select the velocity has a constant

value of

15

12

9

6
4.5-3

x (meters)

1=1011119. 1

1111111110.

0 2 4 6 8 10 12 14 16 t (seconds)

Fig. 4 A displacement signal when velocity is constant.

v = 1. 5 meters = 0. 75 meter/second(2 seconds)

The velocity in this case is represented by the slope of the straight line. We
can write an algebraic equation for x in this example:

x = 0.75 t (the intercept on the vertical axis is 0,
so there is no constant term)

A straight-line type of signal for displacement is obviously not
a very exciting case (the velocity signal (slope) is not changing); it corresponds
to a car moving in a fixed direction at constant speed along the road. Much
more interesting is a displacement that changes smoothly but at a varying
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rate, as illustrated by the displacement signal shown in Fig. 5. Here the
displacement varies through both positive and negative values. We are
now concerned with the problem of how to define velocity so that it can be
determined from the curve. In paritcular, let us determine the velocity of
the moving object at t = 1 second (when x has the value + 3 meters).

x (meters)

4 al10 MENEM. =NM. ION.

3r-
6 t (seconds)

-2

4
Fig. 5 An example of a displacement

signal which varies smoothly at
a varying rate.

d(PTANGENT TO
ACTUAL CURVE
AT tr- 1 SECOND

O 1.5

ACTUAL CURVE

Fig. 6 Magnified portion
of x vs t graph near
t = 1 second.

If we were to magnify the portion of the curve in the vicinity of x = + 3, t = I
we should obtain a graph shown in Fig. 6. The actual signal is changing at
a certain rate at t = 1 second. If this instantaneous rate of change were to
remain constant, the signal variations would follow a straight line called the
tangent to the curve, at t = 1 second. In other words, the slope of the tangent
to the curve at t = 1 second measures the rate of change of the signal at that
instant of time. In Fig. 6, for example, the slope of this tangent line drawn
to the curve at t = 1 is

change in x
change in t

4 - 3
1.5 - 1

1 meter
0, 5 sec.

2 meters/ second

Hence, the velocity at t = 1 second is 2 meters/second.

In mathematical notation the difference (or increment) between
two quantities is generally ir__licated by the Greek letter 6 (delta). Thus, the
difference (increment) between two positions is t x and between two values of
time, 6 t. (dote that 6 x and 6 t are symbols, not products!) With this
notation the preceding calculation is written

6 x 4-3 1 meter 2 meters /second
6 t 1. 5-1 O. 5 sec.

We can restate this process of finding velocity as follows: The
value of a displacement signal is first plotted as a function of time. To
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find the velocity at any time t1, we construct the tangent to the curve at t1.
The slope of this tangent at any instant of time is the desired instantaneous
velocity.

The discussion above is merely a very wordy way of saying that
the velocity is the rate of change of displacement. Velocity at any desired

time can be determined by drawing a tangent to the displacement curve for the
required instant of time, and then calculating the slope of this tangent. For
example, in Fig. 7 a displacement signal is given by the solid line. We
desire to determine the instantaneous velocity at two different instants: t1
and t2. At these instants, the magnitudes of the displacement signals are
A and C, respectively. At A, if the signal were to continue to change at the
same rate as at t1, x would follow the path AB. This line is the tangent to the
curve at A. Its slope is the velocity at t1. Similarly, the slope of CD is the
velocity at C.

Ax

x (meters)

DISPLACEMENT
SIGNAL

A

t2
a b
At

C D

Fig. 7 Determination of velocity.

(seconds)

Definition of Velocit in Terms of Increments

Inspection of Fig. 7 reveals that the velocity at the instant
ti, denoted by v (t1), is the slope of the tangent AB on the graph. As previously
defined, this slope can be written as

v(t1) =
6x
6 t

To compute the numerical value of v (t1) we must therefore determine a value

for O t and a corresponding value for 6 x. To determine these values, we may
select any 2 points on the time axis which are reasonably far apart. In our
graph these have been indicated as a and b. The difference between them (b -
a) is 6 t.

If we now project these points up to the tangent AB and then
project the points of intersection on AB to the x axis, we can determine the
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corresponding value of 6x directly on the axis and v (t1) can then be com-
puted by substitution in the above equation. It is interesting to note that since
AB is a straight line, any two points selected for Lt can be used. The ratio
of the 6x and 6t values will not change; if we know the instantaneous position
as well as the instantaneous velocity of a moving object we can predict the
position of the object of a short time later. The next position of the object
must be equal to the original displacement to which must be added the displace-
ment of the object during the time interval of motion, If the elapsed time
interval is very short (6t is very small) we may assume that the instantaneous
velocity will not undergo any significant change -- that v1 will remain almost
constant. Under such conditions 6x = v

1
Lt and the new displacement will be

x+,6x= x+v16t
From the graph of displacement versus time we can thus deter-

mine all of the instantaneous velocities. If a velocity versus time graph is
available we can reverse the above process, and by using small intervals of
time ( A t is kept small) we calculate the change in displacement during these
small intervals and add these to the displacement at the beginning of the interval
to determine the new position of the moving object. Bit by bit we can thus derive
a curve which shows the displacement of the object at any instant. The smaller
the intervals for At the more precise will be our statement of displacement
versus time.

We conclude this discussion of velocity with one graphical
example of a displacement signal and its corresponding velocity. Fig. 8 (a)
shows the plot of the displacement signal, and Fig. 8 (b) shows the corres-
ponding velocity signal. Notice especially that at tl and t2 the slope of
the tangent to x is zero (because the rate of change of displacement is zero).
Just after the instant t1, x changes very rapidly downward; the rate becomes
less negative and then, just before t2, it becomes quite large once again.

The correspondence between these graphs may be hard to follow at
first. Try actually indicating the slope of the displacement curve in the following
way. Lay a ruler against the curve of Fig. 8 (a) at the point where it crosses the
displacement axis. Adjust the ruler until it is tangent to the curve. You will
notice that it slopes upward to the right. Now change the adjustment to make it
become tangent at a point slightly to the right of the first one. Now it slopes
upward a trifle more steeply than before. Continue this little game, remember-
ing that each time you set the ruler tangent to the curve, its slope measures the
velocity of whatever object is changing its displacement in the manner shown by
graph (a). Now if you examine Fig. 8 (b) you will see that it is a graph of the
slopes you have been looking at. Where curve (a) slopes up nearly vertically,
curve (b) has a high reading. Where curve (a) is momentarily horizontal (zero
slope), curve (b) passes through zero. Wherever curve (a) slopes downward to
the right, curve (b) is found below the time axis, in the region of negative
velocities.
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In summary, the velocity curve can be accurately constructed if
the displacement curve is given. For a succession of values of t, we construct
the tangents to the x curve. Calculation of the slope of these tangents gives the
v values. Thus, the velocity curve presents no information not already avail-
able from the displacement curve. It is also possible to find the x curve if we
are given the v curve. Thus, the displacement and the velocity are in a sense
equivalent signals: each contains the information needed to find the other.

From an engineering standpoint, we are frequently interested in
both signals, x and v. When we travel in a car, x indicates the position and
v the rate at which this position is changing. In another sense, x measures
past accomplishments toward reaching our destination, v measures the present
rate of progress.

Acceleration

We have learned that from a graph of displacement versus time,
we can determine the velocity at any instant by drawing a tangent to the graph
at any point and determining its slope. The slope represents velocity at that
instant of time.

Bodies in motion do not in general move with constant velocity.
For example, the velocity of a body moving along a fixed track might vary
with time in the manner indicated by the graph in Fig. 9 (a). How fast
the velocity of a body changes is a question of considerable importance in
many situations. For example, it is important to know how long it takes a jet
airliner starting from a standstill to reach its flying speed of 160 miles per
hour. Does it reach flying speed before it reaches the end of the runway?
Builders of drag-racing cars are very much concerned with how long it takes
the car to reach its top speed. How long does it take to slow down a car from
50 miles per hour to a standstill? All of these questions involve concern with
how fast the velocity of a body can or does change.

The rate of change of velocity is related to the slope of the
velocity-time graph; the greater the slope of this graph, the taster the
velocity is changing. If the velocity is given in meters per second by such
a graph, and if the time scale is calibrated in seconds, then the slope is
measured in meters-per-second per second. The rate at which velocity
changes is called acceleration, and is commonly expressed in units of this
kind. The acceleration at any instant t is defined as the slope of the velocity
curve at that instant, and it is given by the equation

Acceleration = a = v = slope of a tangent to the v-t graph
t for the given instant of time.

Thus acceleration is related to velocity in the same way that velocity is related
to displacement.

It is clear from the graph in Fig. 9 (a) that LviLt can be
either positive or negative. It is also clear from the graph that a positive
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a)

(b)

VA

a

I I

I

I I

I

At I tb tto

Fig. 9 Graphs of: (a) v versus t for a body moving with
non-constant velocity along a fixed route and (b)
acceleration versus time corresponding to the
v,t curve of (a).

slope means that the body is speeding up, while a negative slope means that
the body is slowing down. The term deceleration is sometimes used instead
of acceleration to describe the case in which the body is slowing down. However,
in science and engineering the single term acceleration is used for both cases;
a positive acceleration means that the velocity is increasing and a negative
acceleration means that the velocity is decreasing.

Bodies in motion do not in general move with constant accelera-
tion. Thus it is often useful to plot a graph of acceleration as a function of
time; a typical graph of this kind is shown in Fig. 9 (b). If a graph of
velocity versus time is given, then the corresponding graph of acceleration
versus time can be constructed as follows: Calculate the slope of the tangent
to the v-t curve at some instant of time. According to the definition this
slope/11v lis the acceleration of the body at that instant, and it is plotted

as one point on the acceleration versus time graph. This process is repeated
a number of times until enough points are obtained to permit the acceleration
versus time graph to be plotted.

Acceleration is a particularly important signal because one of the
basic laws of nature states that the acceleration of a body is directly propor-
tional to the force acting on the body. Consequently, when an airplane or car is
brought to a stop, and if the passengers are to stop their motion in the same
time interval,they must also be subject to a decelerating force (that is, a nega-
tive accelerating force). In an airplane, the force is applied through the seat
belts as the passenger moves forward against the belt. In a car without seat
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belts the force must be applied either through the action of the passenger in
bracing himself with his hands and feet, or through contact of the passenger
with the dashlloard or windshield (a less comfortable technique).

We note now that, as in the relationship between displacement
and velocity, the acceleration curve presents no information not already
available from the velocity curve. Therefore, if we know the displacement
curve we also know the velocity and acceleration curves. We indicate this
relationship which permits the derivation of the v and a curves from the x
curve by the following shorthand notation:

x v a
Thus, displacement, velocity, and acceleration are related signals: each
contains the information needed to find the others. It is logical then to expect
the reverse relation

a v x
Now that we know how to go from x to a., how do we accomplish

the reverse traLisition? It turns out that the technique for doing this involves
nothing more than the simple process of calculating the areas under the a, t
and v, t curves, much the same as was done for the population-versus-decades
curve of Chapter B-1.
4. THE RELATION: a x
The Relation: v x

Figure 10 is a graph of v versus t for a car driven on a highway at
a constant velocity of 60 miles per hour at time t = 0. The graph looks extremely
dull, but it contains a little more information than you may have noticed at first

V

(mi/hr)

60

1 i .
0 2 4 6 t (hours)

Fig., 1.0 Graph of constant velocity of a car moving
on an interstate highway.

glance. Not only does it show the velocity of the car at any instant, it also makes
it possible to find out how far the car has moved (its displacement) up to that time.
Fig. 11 indicates how this is done. Since displacement = velocity x time, and the
area of a rectangle = height x base, we can use the area of a suitable rectangle as
a model of displacement. This ancient system still has very great value, be-
*This scheme is actually based on the way the ancient Greeks multiplied two num-
bers. Since they indicated numbers by letters of the alphabet, and the ideas of 0
and of the positional value of digits had not been invented, doing arithmetic was
tricky. Showing the product of b and h as the area of the rectangle of base b and
height h, however, was quite easy. We still say the square of 21", as though we
meant the area of a rectangle of base 21 and height 21; and in using the Theorem
of Pythagoras we do mean just that.
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°

cause we can make an approximation of a curve graph by means of a bar graph
made of rectangles. Thus the area under a curve (i.e., down to the horizontal
axis, the axis of abscissas) can be at least roughly determined, as in the follow-
ing example.

AREA = DISTANCE
(mi/hr) 1 RAVELED

= 60 Imi/hr)(1 hr)
60 = 60mi

FrA

t (hours)
Fig. 11 Relationship between area under curve and

distance traveled.

V
mi/ hr

60

AREA = DISTANCE TRAVELED
= (60 mi/ hr)(3 hr)
= 180mi

t (hours)

We can seldom drive at a constant velocity (as that shown in
Fig. 10) for any length of time. Some one may cut in front of us or we
may round a curve or climb a hill and be compelled to slow down. Perhaps
we may attempt to pass another vehicle, or the speed limit may increase
and we may increase our speed. When driving in the city we change our
speed even more frequently because of turns, traffic lights, and traffic jams.
Let us consider, for example, how the velocity of an automobile being driven
out of Washington, D. C. at 5 P.M. on a Friday afternoon may vary. One
likely v, t graph for this situation is shown in Fig. 12. If we wish to cal-
culate how far we have traveled during the first hour we must calculate the
area contained under the v - t curve between t = 0 (the start of the journey)
and t = 1 hour. It is evident from Fig. 12 that this computation is
considerably more difficult than it was for the simple straight-line graph of
Fig. 10.

There are several procedures which we may adopt. If we
possess a planimeter (a mechanical device for finding area from a graph) we
may determine the area with reasonable accuracy. Lacking such an instrument,
we may "count squares",that is, plot our v, t curve on a sheet of cross-ruled
graph paper and count the number of squares enclosed by the curve. If we
arrange each square so that its area represents a certain unit of distance,
then the number of squares under the curve within a given time interval is
equal to the distance traveled during that interval.

An alternative and more meaningful approach is to approximate the curve
of Fig. 12 by a new curve whose area is approximately equal to the original but
which has the property that its area is easy to calculate. Such an approximation is
shown in Fig. 13. Here the straight lines are drawn so that the pieces of the ori-
ginal curve lying inside the straight lines have approximately the same area as those
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(mi/hr)

40

30
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10

TRAFFIC
JAM

LIGHT
TRAFFIC

V

(mi/hr)

40

30

20

10

ENTRY ONTO
PARKWAY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t ( hours )

Fig. 12 The velocity of a car leaving Washington D.C.
during Friday afternoon rush hour.

ACTUAL v-t CURVE

APPROXIMATE v-t CURVE

0.1 0.2
ti

Fig. 13 Approximation to actual v, t curve of Fig. 12.

4"

%
I

1

% I 1 1

2 \--1, 4 ; ) 5' _1

0.3 0.4 0.5 0.6 0.7 0.8

6

-6:9 1.0 t (hours

which are outside of the curve. (This equating of areas is done by "eye ";, that
is, the lines are placed so that the areas look equal.)

With such an approximate plot, the distance traveled is now the
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sum of the areas of the set of six rectangles in Fig. 13. This approximate
distance (denoted Da' where the subscript "a" means approximate) is given
by

Da = Al + A 2
+ A

3 4+ A + A6

where the A's represent the areas of the individual rectangles. Specifically,

Al = v
1

At
1

where v
1

is the height (or constant velocity) of rectangle 1 and A t
1

is its

width (or time interval). Similarly, the other areas are

A = v At
2 2 2

A6 = v
6
At

6

With this information the equation for Dacan be written as

Da = v
1
At

1
+ v2At2

+ v
3
At3

+ v4At4 + v
5
At5

+ v
6
At

6

Reading the values of the v's and At's from the axes of Fig. 13 we see
that

Da = (23)(0.11) + (24)(0.11) + (5)(0. 095) + (27)(0. 135) +

(22)(0. 125) + (40)(0. 17)

= 18.8 miles.

It is important to keep in mind that the above calculation for Da

involved approximating the true v, t curve. If we wish to evaluate the area
under the v-t curve more accurately, we may use a greater number of
rectangular segments for the approximation. One such improvement is shown
in Fig. 14, where the number of rectangles is increased from six to
sixteen. In this case, the approximate distance traveled in one hour is given
by

Da = Al + . . + A16

or, in terms of the heights and widths of the rectangles:

Da = v
1
At

1
+ . . + v16 1116

Obviously, we can achieve greater accuracy if we use 100, or
1000, or 1, 000,000 rectangles to represent the actual curve. The sum of the
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I A

L

41111=11401"

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (hours)
Fig. 14 A closer approximation to the curve of Fig. 12.

areas of a larger number of rectangles is a closer approximation to the area
under the actual curve. To simplify the computation where a large number of
rectangles are considered, we choose segments of equal width, Lt; the
distance Da can then be written in the form:

Da = (V1 + V2 + + Vn..1 + Vn) Li

where n is the total number of rectangles and Lt is their width, which is the
same for each of the rectangles.

To write a sum of discrete values in less cumbersome form we make
use of the symbol E, which is the Greek alphabet symbol for the English letter S
(for sum). Thus the above statement may be written compactly:

Da =i; (viLt)

We have already explained (Sect. 6, Ch. 3) the meaning of this expression, but
it is worth repeating. (viLt) means the product of any selected velocity (the one
whose identification number is i) multiplied by the fixed time interval 6t. When
we write.E.

1
we mean "substitute all the integers in turn, 111,,ginning with 1 and

=
ending with n, in place of i in the expression written to the right. Add the results."

To be more specific, let us assume that the area under the graph
is represented by four rectangles, each of width Lt . The value of the heights of
these rectangles are v1, v2, v3, and v4. The sum of the areas of these rectangles
would then be

Da = viLt + v26t + v3Lt + v4Lt = (v1 + v2 + v3 + v4) Lt

We can use our symbol 73:
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4
D = E (v. At)a 1 = 1

To interpret this we simply replace the subscript "i" in the product which
appears after the E sign with all integral values from 1 to 4 and thus develop
four products:

viAt, v26t, v3At and v4At

The sigma sign (E) now indicates that these are to be summed and that the
sum should be set equal to Da, the approximate distance through which

the object moved, thus:

Da = v
1
At + v

2
At + v

3
At + v4

At

the initial integer for the substitution is always placed just below the sigma
sign and the final integer for the substitution is always placed above the
sigma sign. n
Thus, the symbol E means simply "the sum of the quantity to its right, i

=1
4"ilkiwaimegerrreivtig iii integer van.4...-:q from 1 to n."

Now, the larger n becomes (that is, the greater the number of rec.
tangles which we construct on the graph), the smaller At becomes (that is, the
narrower we must make the rectangles) and the closer will the value given by

tDa= Z v.A approach the true value D. In fact, when n increases indefinitely
(At decreases toward zero), the tops of the rectangles and the actual curve
become identical. The total area under the rectangles and the true curve of
velocity will then be equal and Da = D.

A special symbolism is used to represent this situation where
Da = D. The symbol sigma (E) which represents a sum of a limited number
of products of the same form, (v.p t in this example) is replaced by another
symbol f,and the symbol At, which represented a small but finite time interval,
is replaced by dt, which represents 'a time interval so small in value that a
practically infinitely large number of rectangles are produced under the
graph. As noted above, this infinitely large sum of infinitely small rec-
tangles represents the true area under the graph, which in this example is
the true displacement.

D = f v dt

It should be noted that this is a general statement. It must be interpreted
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properly. It merely states that the distance the object has moved can be
deterinined by dividing the area under the v - t curve into infinitely thin slices,
of width dt. For each of these slices we determine the value of the associated
velocity v and then calculate the area vdt. The statement now indicates that
the sum of this large number of vdt products represents the total area or the
total displacement.

Obviously the total displacement will depend on the time during
which motion occurs, and this must be indicated in some manner. It is
therefore customary to include the time limits within which we seek the dis-
placement by showing these limits near the f symbol as follows:

t = 2 sec
D = vdtf t = 0 sec

Here the time limits indicate that we are concerned with the
displacement of the moving object between the time zero and time equal to
2 seconds.

t =2
The process expressed by the equation D = f vdt, a process of

t =0
finding the area under a curve, is called integration, and the area thus
calculated is called an integral. With such terminology the expression
"the area under the v- t curve is the value of the displacement" can be restated
as, "the integral of velocity with respect to time is the displacement."

The Relationship Between Discrete and Continuous Models

In the graphical model of the growth of population, the total
number of people counted over a period of 100 years could be determined
from the sum of all the bar areas. This summation process is similar to
the method used to determine the approximate area under the v-t curve.
In the latter case we computed the area under a continuous curve by con-
verting the curve into a discontinuous or discrete series of small rec-
tangles, then calculating and adding all these areas.

There is thus a close relationship between models which are
represented by discrete values -- such as population census at fixed dates --
and those which are represented by a continuous variation of numerical
values -- as in the velocity of a moving vehicle. We can approximate con-
tinuous signals by discrete signals and vice versa. But in the graphs which
display discrete time-changing signals, the areas under the graphs are
found by cumulative summation (E) while the areas under a continuous curve
are precisely determined by the related process of integration (i ). The man-
made world can thus be described in terms of either discrete or continuous
graphical models, but despite difference, these models are related and may
be interchanged to simplify mathematical treatment, provided the limits
within which these substitutions are valid are kept in view.
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Initial Displacement
Returning now to the determination of x from v, we recall that by

computing the area under the curve of Fig. 13 we determined the distance D
which the car traveled from the time it started its journey. If we now wish to
state its position one hour after the start, we must indicate the initial position of
the car. The value of D represents only the change from the original position.
Suppose the car had been driven 900 miles from a position in Florida two days
previously and we wish to indicate its present position relative to its starting
position in Florida. Obviously, we would add 900 miles to the computed area D
to obtain the answer. Thus, the displacement information determined from the
area under the v-t curve is not sufficient in itself to indicate the present position
of a moving body: we must combine knowledge of the distance traveled with
knowledge of the position from which we started. Mathematically speaking then,

x =xo +Dt
= xo + fovdt

where v is velocity, x is the total displacement from the reference or initial
position, and x0 is the displacement of the vehicle from the initial position
before this last leg of the journey began. (In more general terms, x0 is
known as the initial condition. ) This equation can be considered a model for
describing how a vehicle on a fixed route changes position.

In keeping with the concept set forth in Section 9, Ch. 3, that one
model may apply to different systems, let us consider a system completely dif-
ferent from a moving car but in which the ideas of the above equation apply di-
rectly.

In a chemical plant producing hydrochloric acid, the chemical
engineer must keep account of the total amount of acid in the plant's storage
tank, not just the amount which has flowed in since the start of the day's work.
The storage tank is shown in Fig. 15. In this figure, the acid flows from the
filler pipe into the tank at a rate of q gallons per hour. The volume of acid
already present in the tank is V0 gallons. The variation of q with time
for a typical morning is shown in Fig. 16. (The dip at 10:15 A.M. resulted from
a malfunction of processing equipment, and the noon-time dip is caused by
reduced production because of lunch.) At 8:00 A.M. on this day, the volume
of acid stored in the tank (the residue from the preceding day's production)
is 1700 gallons. In other words, the initial volume (or initial condition) for
the day is Vo = 1700 gallons. Using the ideas expressed by the equation of
the last section the engineer can determine the volume of acid V in the tank
at any time, from the relation

V = V0 + f qdt

where V is analogous to x, Vo is analogous to xo and q is analogous to v. In
other words, q is a rate of change of a quantity in time, as is v, and V is the
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2000
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0

FILLER PIPE

STORED ACID

STORAGE TANK

Fig. 15 Hydrochloric acid storage tank.

q ( gallons/hr)

APPROXIMATE q

8 AM 9 AM 10AM 11AM 12 PM 1PM

Fig. 16 Rate of flow of acid into tank of Fig. 15
on a typical day.

total quantity summed over a certain time interval just as is x.

t (hours)

With Vo = 1700 gallons and after 4 hours of flow the total
volume in the tank at noon will be given by:
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4
V = 1700 + f qdt

area under
q - t graph

where t = 0 represents 8 A.M. One possible approximation of the area under
the q - t graph is shown by the dotted lines in Fig. 16. Calculating this area
from the graph yields:

or

4
f qdt 7500 gallons

0

V ks 1700 + 7500 = 9200 gallons

(Notice in Fig. 16 that triangular areas were used in two instances as part of
the approximation. Although only rectangular areas were used before to show
the transition from a true curve to an approximate curve to derive the total area,
any conveniently shaped area can be used for computing the approximate area
under the curve.)
The Relation: a --.v

When examining the relationship between velocity and displacement
it was shown that if the v-t graph is given, the x-t graph can be constructed by
calculating the area under the v-t curve. In a similar way, if the a-t graph is
given, the v-t graph can be constructed by measuring the area under the a-t
curve. To demonstrate this fact, a = z v/At is rewritten as

Pv = a Pt

Now if Pt is small enough so that a is constant during this interval of time,
then this equation states that the change in velocity Lev during the small time
interval is equal to the area of the approximating rectangle of width Pt under
the a-t curve [a typical rectangle of this kind is shown in Fig. 9 (b)] . Simi-
larly, the change in velocity during an adjacent, interval of duration Pt is
equal to the area of the approximating rectangle associated with that par-
ticular interval. Continuing this procedure, the total change in velocity in
the interval between any two instants of time, ta and tb, in Fig. 9 (b) is deter-
mined by dividing the entire interval (tb - t a) under the curve into tiny rec-
tangles of equal width Pt and summing the areas of these rectangles. The
result can be written as

v = v(tb) - v(ta) = a
1
Pt + a

2
Pt . . + a n6 t

= (al + a2 + . . . + an)Pt
= area under a, t curve from ta to tb
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where al, a2,, an are the heights of the n rectangles.

When Lt is made infinitely small this equation can be written

v(tn) = v(ta) + area under a-t curve from ta to tb
tb

= v(ta) + f adt
a

where v(ta) is the "initial velocity."

0

V

V0 + OIA t
V0

WIN OIND 01
MEP 0. 1110.1.0

1111M0001 MIN

ta tb
( b )

Fig. 17 Conversion of a-t into v-t graphs.
The method by which the acceleration-time curve can be used to

develop a velocity-time curve is illustrated in Fig. 17. In Fig. 17 (a) the
acceleration is displayed for each instant of time.

The value of the acceleration is al at a time ta, then it changes to
another value at time tb. The difference in time (tb-ta) is represented by At.

If At is made small enough, the acceleration a1 will not change any
significant amount, and it may therefore be considered as practically constant
throughout the entire interval At. Under these conditions the product of al A
represents the shaded area in the graph.

Now, al At also represents the product of an acceleration and time,
which is physically representative of the change in velocity of AV, during the
time interval At. If the velocity at time ta is known to be some value vo [as
given in the graph Fig. 17 (b)] , the velocity at the later time tb must be equal
to vo + Lev or vo + al At' as shown on the graph.
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With the velocity at instant tb thus determined the process can be
repeated. An instant of time not too far from tb is selected, so that the accel-
eration within that interval is practically constant. The area of the small rect-
angle is then calculated to determine the velocity change during the interval,
Av. If Av is now added to the velocity at tb the sum will represent the velocity
at the new instant of time. This process is then repeated a number of times for
different values of tb' until enough points are obtained to permit the entire v-t
graph to be drawn.

If the value of the displacement x is known for a single value of t,
such as at ta, the area under this velocity-time curve can be used to obtain the
corresponding graph of displacement versus time, by the same procedure. Thus
if we know the graph of a versus t, and if we know the values of v and x at some
instant of time, (i.e., if we know the initial conditions) then we can apply the
area process to the a-t curve to obtain the corresponding v-t graph, and we can
apply the area process to the v-t curve to obtain the corresponding x-t graph.
That is, we can use information about acceleration to calculate first the velocity
and then the displacement of the vehicle.

Thus, there is a two-way transition possible among displacement,
velocity, and acceleration, which is expressed simply as

DISPLACEMENT VELOCITY ACCELERATION
5. A MODEL OF MOTION

In deriving a model of a system we first must understand in general
terms how the system operates. The several systems (dragster racing toward
finish line, car traveling from city to city, and ship maneuvering toward a pier)
mentioned in the introduction above are similar in their principles of motion. In
order to change velocity, an acceleration control of some sort is used. This is
a pedal linked to the engine's carburetor in the case of the dragster and car; it
is a throttle which controls the engines of the ship. In operation, it is the posi-
tion of the control which determines vehicle acceleration, which in turn deter-
mines how far the vehicle will travel in a given time. The farther we depress
the accelerator pedal of our car, the faster it goes and the greater the distance
it travels in a given time.

A model for the description of such vehicle motion must involve a
mathematical relationship between the position of the acceleration control (which
we label with the letter u) and the vehicle's displacement x. The block diagram
of Fig. 18 shows the interrelation between the input and output. How is x
determined by u? What happens as a result of an input signal u applied to a
vehicle?

VEHICLE
INPUT OUTPUT

(ACCELERATION- ( VEHICLE DISPLACEMENT)
CONTROL POSITION)

Fig. 18 A simple motion system.
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control.
Let us consider what happens as the vehicle operator moves the

1. We stated above that the position of the acceleration control
causes acceleration of the vehicle. The exact relationship
between this acceleration and the position of the control may,
in some cases, become quite complicated. In a practical
sense, however, we can assume that the acceleration of the
vehicle at any moment is directly proportional to the position
of the control. Acceleration controls are usually designed in
this manner. Thus, quantitatively, we can write that acceler-
ation a is equal to a constant multiplied by u:

a = Cu

Fig. 19 shows the relationship which exists within the system.
Since C is a constant, the equation is regarded as a scaling
operation (that is, the input is changed in magnitude by the
value of C). Therefore, C is named "scaling coefficient"

C

(SCALOR)
a REMAINDER

SYSTEM( ACCELERATION-
CONTROL
POSITION

(ACCELERATION) (VEHICLE
DISPLACEMENT)-

Fig. 19 The vehicle motion model after step (1).

( ACCELERATION-
CONTROL
POSITION

or scalor and the block diagram representation of this
operation is indicated by a block labeled "scalor" in the
figure.

2. We learned in Sec. 4 that the vehicle's velocity is simply the
area under the a, t curve. We can indicate this process of
finding the area under the a, t curve with a block labeled
"area- finder ", or an "integrator". The integrator thus con-
verts the acceleration signal at its input into an output which
is a v-t signal. "Time" comes into the system because the
integrator is a dynamic instrument. That is, the signal at its
output changes from moment to moment exactly as the velocity
of a real vehicle does, just as long as the acceleration control
is not set at 0.

C

(SCALOR)

a AREA- FINDER

(INTEGRATOR )

V

(VELOCITY)

REMAINDER

SYSTEM ( VEHICLE
x

DISPLACEMENT)

Fig. 20 The vehicle motion model after step (2).
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3. Since displacement is the area under the v-t curve, we may
apply the v-t signal to another " area-finder" or integrator
and produce a signal which represents displacement at each
instant of time. The complete model of the vehicle acceleration
system would then be represented in block diagram form as
shown in Fig. 21.

C

(SCALOR)

a AREA- FINDER
(INTEGRATOR )

V AREA -FINDER x
(INTEGRATOR )1

Fig. 21 The complete model of vehicle motion.

Now that the model has been derived, let us emphasize several
points. We derived the model by working from a general rather than specific
knowledge of the system's operation. The model compels us to represent this
knowledge in a quantitative fashion. In the description of the relation between
the control position and acceleration our original comments were qualitative and
simply pointed out that "an acceleration results from the position of the ac-
celeration control". In our model, we need to determine the exact mathematical
relationship (for example, in the model above, a = Cu). The model guides us
in the analysis we make to determine the detailed properties of the system.

The model of Fig. 21 is this a concise and brief description of
of the system. The model is really equivalent to the several paragraphs of
general discussion with which we began this section. Indeed, the model is an
attempt to produce a precise system description which cannot be misunder-
stood -- in contrast to any more verbal statement which may be subject to mis-
interpretation and misunderstanding. Thus, the model is a special language to
describe a system, and is the starting point for studying its characteristics.
Finally, the construction of a model in a step-by-step fashion indicates the phy-
sical laws that are required to understand the system's operation. In the par-
ticular case of Fig. 21 there were two such laws:

1. The relation between acceleration-control position and
acceleration, which described the way the control was designed.

2. The relation: a x
In the model of Fig. 21 we included no information about the

initial displacement xo and the initial velocity vo (i. e. , the initial con-
ditions). If these values were not equal to zero, then the complete (and more
general) model of vehicle motion would appear as shown in Fig. 22. The "adder"
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blocks in the figure are so named because they permit the introduction of
the initial conditions vo and xo into the equations of motion.

C

SCALOR
a INTEGRATOR

Vp

ADDER INTEGRATOR ADDER

Fig. 22 The complete model of vehicle motion including
nonzero values of initial velocity and displacement

The initial velocity vo is added to the change in the velocity calculated by the
first integrator. The initial displacement x is added to the change in the
displacement calculated by the second integ rator.

6. THE ANALOG COMPUTER

Once a model has been developed it can be used to investigate
many properties of the system (or systems) from which it was derived. This
investigation can take place with pencil and paper, or experimentally if we can
build a functioning model which represents the system under consideration.
Instead of merely calculating possible outputs, we can operate the functional
model and observe its behaviour with different input conditions.

The analog computer can act as such a functional model provided
we program it so that its inputs and outputs are analogous to those of the
system under study. Analog computers take many forms: mechanical, hydraulic,
and electronic but the last is the most common. Some basic components are:
the adder, the scalor, and the integrator. These components automatically per-
form the calculations we would ordinarily make on paper.

The symbols for the basic analog computer components are
shown in Fig. 23. In terms of these components, the vehicle motion
model in Fig. 22 appears as shown in Fig. 24. If we program an
electronic _analog computer according to Fig. 24, we can simulate the
vehicle motion as follows: The acceleration-control position is simulated by
a manual control which varies the electrical input. The vehicle displacement
x, which is the output of the computer, is displayed on a meter. We can start
with the meter needle set at zero and then attempt to change the input control
to move the needle from its initial position of zero to any pre-determined
final value position (e.g., we might choose +1 on the meter to represent the
distance we wish to travel).

What is meant by "operating" the system on the analog computer?
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INPUT I

INPUT 2

INPUT 3

(a) ADDER

3
OUTPUT = E INPUT i INPUT C OUTPUT = C INPUT

i = I

(b) SCALOR

OUTPUT = AREA
UNDER "INPUT vs
TIMCCURVE

(c) INTEGRATOR

Fig. Z3 Analog computer components.

MANUALLY
CONTROLLED
INPUT

varr.--frolies-alm

Fig. 24 Simulation of vehicle motion model on the
analog computer.

METER

For example, how would we simulate maneuvering a ship next to a pier? In
reality, the' ship' s captain observes the place to which he must move his ship
and adjusts the acceleration control to make the displacement of the ship
change as smoothly as possible from its initial value to the final desired value.
To "maneuver" the analog model then, the operator should observe the meter
reading and attempt to adjust u, the input, so that the meter changes from 0,
the initial position, to +1, the final position of the pointer. Exceeding the value
+ 1 simulates the ship's crashing into the pier.

Thus, a simple manipulation of an electrical control can imitate
the operation of a vehicle described by our model, and we can gain valuable
insight into the workings of the real system without actually building it.
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7. SUMMARY

This chapter concentrates on an important aspect of dynamic
modeling: the description of models which involve motion or which change
in time. During our study we learn that model inputs and outputs are de-
scribed in terms of signals which, in turn, are numerical values usually
presented in graphical form or as mathematical equations. We introduced
two important motion-describing signals of this kind: LelcLcity and accelera-
tion. These signals of motion permitted us to study the modeling of simple
systems which varied from time to time.

Velocity is the rate of change of displacement with respect to time
and is equal at any instant of time to the slope of the tangent on the x_ -t curve
at that instant. Similarly, acceleration is understood to be the rate of change
of velocity with respect to time and is equal at any instant of time to the slope
of the tangent on the v-t curve at that instant.

The concept, introduced in Chapter B-3, that area under a curve
has an important meaning was further developed by a study of the relation

x v a

We move from left to right (x towards a) in this expression by finding the slopes
of the tangents to the curves and we move in the reverse direction by finding
areas under curves. Knowledge of the variation in any one of these signals
gives us the basis upon which we can compute the other two variable quantities,

The concept introduced in Chapter B-3, that one model may
frequently apply to many different systems, permitted the derivation of a
simple model of motion which could be used to the study of any moving vehicle.
We applied this model to situations such as a car moving along a highway and a
ship maneuvering toward a pier.

Finally, the introduction of the analog computer gave us a means
for developing a functional model of motion. Programming the electronic
analog computer with electrical inputs and outputs that simulate those of the
system under consideration enabled us to produce a laboratory simulation of
the real system, and eliminated the need for the construction and study' of full
size prototypes.
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PROBLEMS

4-1 A graph of an automobile trip via an interstate turnpike is given
below. Draw a graph of the velocity of the car during this trip.

x
(MILES)

360
300
240
180

120

60

0 1 2 3 4 5 t ( HOURS)

4-2 A distance-time curve for a 100-mile auto trip is shown below.
Determine the velocity:

a. 120 minutes after the start.
b. 30 minutes before the end.
c. When the car is midway between the starting point and the destination.

x
(MIL.4

100

80

60

40

20

30 60 90 120 150 180 t(M1NUTES)

4-3 it is found during an acceleration of a racing car that it is 15 feet
from the starting point at the end of the first second, 60 feet from
it at 2 seconds, 135 feet in 3 seconds, and 240 feet in 4 seconds.
Plot these data as a smooth curve and determine the velocity at
2 seconds and 4 seconds.

4-4 A river has a current velocity of 10 mi/hr. A motor boat on this
river moves through the water at 30 mi./hr.

a. What will be the actual velocity of the boat when going upstream?
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b. What will be the actual velocity of the boat going downstream?

A graph of an automobile trip via a variety of roads and highways
is given below.

a. Draw two graphs of the velocity of the car during this trip, taking
slopes at 30-minute intervals and at 60-minute intervals. What
accounts for the difference in the two graphs:

b. During which period of time was the velocity the greatest? the least?

(miles)

150

100

50

0 I 2 3 4 5 6 t (hours)

4-6 The velocity of an automobile at various instants after starting time
is given in the graph.

a. Draw an acceleration versus time curve for this motion.

b. With a graphical construction determine the acceleration of the
car at t = 8 seconds after the start.

c. Describe the motion of the car between times 7. 0 and 7. 5 seconds.

d. How far did the car travel between the times 7. 0 and 7.5 seconds?

e. Using the graph, determine the area underneath the curve as
accurately as you can. How far did the car move between 7.0
and 9. 0 seconds?

(1141/HR) 80

60

40

20

0
6 7 8 9 10 t (SECONDS)

4 -7 If the earth is about 1. 5 x 1011 meters from the sun, and is orbiting
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in essentially a circular orbit, what is the velocity of the earth in
its orbit around the sun?

4-8 Show that the slope of the exponential curve given below is the same
at any point as the value of the curve itself at that point. Show also
that one plus the area under the c7,irve between 0 and any time t is
the same as the value of the curve itself.

et

18

16

14

12

I0

8

6

4

2

0 0.4 0 8 12 1.6 2.0 2.4 2.8

t2

4-9 Plot the distance-time curve, d -12 from t = 0 to t = 5 seconds ,
t + 3

where d is in meters. Determine the slope at 1-second intervals
and plot the velocity-time curve. Using this curve, determine the
area under the curve in each 1-second interval and plot the resultant
distance-time curve. How does it compare with the original curve?

4-10 The mileposts on the Garden State Parkway start at 0 at the southern
end. You have passed milepost 15 on this parkway at 12:01 P.M. Your
velocity is a steady 60 miles per hour, north.

a. At what time should you pass milepost 25? 135? 165?

b. Which of the predictions made above is most likely to be correct?
c. Which is least likely to be correct? Why?

4-11 A radar operator in the weather bureau at New York City is tracking
an approaching storm. The following graph indicates the distance
from New York with respect to time.

a. At 1:15 PM he predicts the possible arrival of the storm at NYC
as 3: 05. On what did he base this prediction?

b. If he made his prediction at 1:30 what would the new predicted
time be?
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c. When he makes a new prediction at 2:20, what will be the new
estimated time of arrival of the storm?

X

(MILES
FROM 80
NYC)

60

40

20

°I 00 15 30 45 2:00 15 30 45 30015 30 45 4:00

4-12 An airplane landing at an airport touches down on the runway at
150 miles per hour and decreases its speed linearly to zero in a
thirty-second interval. What must be the minimum runway length
for the safe landing of this plane?

4-13 An acceleration signal generated by a spaceman repeatedly opening
and closing the jet valve on the gun that propels him is shown below.
What do his velocity and displacement curves look like?

OA

2T 3T 4T 5T

4-14 Suppose a body sta:z..its from rest with a uniform acceleration of
magnitude a. Show that when the body has attained a velocity v,
it will have gone a distance d that is related to v by the formula

2
d = v

2a

(Hint: Sketch the acceleration, velocity, and displacement curves.
Derive formulas for velocity and displacement in terms of t.
Eliminate t, )

4-15 One important application of finding areas under curves (i. e.,
integration) used frequently by engineers is the determination of
the average value of some signal of interest. sLdefinition, the
average value of any "signal s" (denoted s) is:
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tr
= J sdtIIMIINM

t
2

- t
1

tl

This equation says that the average value of s. equals the ales. '.ender
the curve of s versus t,in the interval between t = t1 and t2. divided
by the length of the interval, t2 (This is a generalization of the
averaging technique which you have learned in your mathematical
course. )

The current in a Geiger-Mueller tube is used to monitor the level
of radiation coming through the shielding around the core of a
nuclear rea.ctor. This current varies with time as shown in the
table below. We wish to determine the average value of this current
in order to determine the average radiation level. What is this
average current? (It is advisable to plot the given data to help in the
calculation. )

t secondsL current microameres
0 66

1 80

2 76

3 78

4 80

5 71

6 59

7 50

8 53

9 55

10 52

Note: the ampere is the internationally accepted .nit of current.
A microampere is one millionth of an ampere.

4-16 Just before touchdown a plane is moving at 160 mi/hr. The plane
uses 1.5 miles of runway to stop.

a. How many seconds does it take to stop the plane? (Assume uniform
acceleration).

b. What was the average acceleration in miihr sec. or ft/ sect of the
plane?

(See problem 4-15 for definition of " average").

4-17 A train moving across the country passes a series of telegraph
poles, equally spaced 30 meter's apart. A passenger on the train
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amuses himself by determining the average number of poles he pas-
ses per second at 15 minute intervals. The table displays his obser-
vations.

Time
10.00
10.15
10. 30

10.45
11. 00

11.15
11. 30

11.45

Average number of poles passed
1. 0 poles per second

t

I I

it

I I

I I

a. Calculate and graph his average velocity at each instant
of observation.

b. What was the maximum acceleration achieved by the train?

c. From the velocity versus time graph, determine how far the
train movcd between 10:15 and 11:00 A. M.

d. What was the average velocity of the train between 10:00 a. m.
and 11:00 a. m. ?

(See problem 4-15 for definition of "average". )

4-18 A baseball moving at 60 feet per second toward a batter is hit in suck
a way by the batter that after the hit it is moving at 80 feet per
second in the opposite direction. The bat-ball interaction time is
about 2 x 1"2" seconds.

a. What was the change in the velocity of the ball?
b. What was the average acceleration of the ball in ft/ sect?
c. If the acceleration was constant, what was the ball's velocity

1.0 x 10-2 seconds after the interaction started?
d. After the hit, how long would it take the ball to travel back to

the pitcher's mound (60. 5 ft).

(See problem 4-15 for definition of "average". )

4-19 Assume that all of the turnstiles in a ballpark have counters which
are connected to a central device which gives a reading of p, the
number of people per minute entering the park. At noon the reading
is zero when the gates are opened. The value of p increases linearly
(i. e., as a straight line) from zero to 400 perople per minute in the
first half-hour, remains at 400 for one-half hour, and then drops
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linearly to zero by 2:00 p.m., thirty minutes after the game has
started. (a) What was the total attendence? (b) How many people
missed the start of the game?

4-20 In June of 1966, Surveyor I landed softly on the surface of Earth's
moon and began taking a historic series of photographs. The
velocity of Surveyor, as it approached the lunar surface, was
telemetered to tracking stations on Earth. This velocity varied as
shown in the figure on page B-4. 3 6 . The main retrorocket fired at an in-
stant we have defined at t = 0. At this time, Surveyor was 52 miles
above the lunar surface. (a) What was its altitude when the main
retro-rocket burned out (at t = 30 seconds)? (b) What was its alti-
tude at t = 50 seconds?

4-11 Dix Hills, New York, stores water for its residents in a large elevated
storage tank. Water is poured into the tank from underground wells
to replenish the supply as it is used. This added water flows in at
a rate q1. The residents drain off water from the tank at a rate of

c12*
If q1 and q

2
(in gallons per hour) vary as shown in the figure,

determine the volume of water in the tank at 10 P. M. if the volume
at noon (i. e. , the initial volume) is 16,000 gallons.

q,
(legal/to

30

20

10

012 PM 2PM 4PM 6PM 8PM 10PM 12AM .(hr)
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MAIN RETROROCKET FIRES

MAIN RETROROCKET BURNOUT
VERNIER ROCKETS FIRED/

I0 20 30
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4-22 Shown in the figure is a velocity curve that represents the motion
of many physical systems, some being the motion of a pendulum,
the swaying of a bridge, and the movement of electronic charges in
the lamp on your desk. Determine the displacement and acceleration
curves associated with this velocity curve. What is the most
significant comment you can make regarding your results?

A

B-4. 37
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Chapter-B 5
PATTERNS OF CHANGE

1. THE IMPORTANCE OF CHANGE

For a dull evening, nothing surpasses being paired with an individual who
can talk about one subject and without any original or provocative ideas on that
topic. The danger of falling asleep while driving is especially great on a nodern
thruway with little traffic, only gradual curves, and no billboards to arou.:.ie our
interest. Every college student is painfully conscious of the effect created by a
teacher who lectures (with great authority, perhaps) in a monotone--his voice
never raised or lowered, and with only an occasional pause for breath. Finally,
no one is anxious to live in a community devoid of change; a town where no roads
or parks are built, where there is no change in inhabitants, and where nothing
"exciting" ever happens. In spite of the occasional, whimsical plea of the older
generation for a return to "the good old days, 11 very few people really want a
reversion to a lower average standard of living, a shorter life expectancy, less
personal mobility, disenfranchisement of women, and so forth.

Change is essential in a interesting, exciting, and challenging life; the
promise of change in the future stimulates and drives the individual to personal
accomplishement. * In the same way, situations of interest in applied science

*We are not saying, of course, that change is always desirable, particularly when
it may occur much too rapidly. One frequently wishes certain experiences could
linger on and on, that the passage of time could be slowed.

are normally characterized by change. The interesting problems in the last two
chapters are those in which we wish to calculate the position of the vehicle when
the speed is changing according to a given curve, or in which the rate of population
growth is changing because of the discovery of life-saving medicines or new and im-
proved health measures.

Indeed, in science we can even go further and state that the really interest-
ing situations are those in which change occurs and in which the change is unpr :-
dictable. This feature of unpredictability adds enormously to the depth of interest.
For example, no one watches a television screen very long when a test pattern
is constantly portrayed. In a broader sense, no one would watch TV if he could
predict precisely what pictures would be shown for the entire program duration.
Interest is aroused because the future changes are uncertain, unpredictable. **

**There is an interesting example of the importance of unpredictability. Tele-
vision stations frequently broadcast sports events (football games, prize fights,
etc. ) a day or several hours after the actual occurrence. If one has learned the
results from the newspapers or news broadcasts, interest is sharply diminished;
the more detailed knowledge one has, the less the interest in the delayed telecast.

The engineer even goes further than the above general statements and states
that the amount of information contained in a message depends on the probability.
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of that message. As an example of how information and probability are related,
we consider a message or signal which consists of a sequence of binary numbers

0 1 1 0 0 1 0 1 0 0 0 1

Each number can have either of two possible values, 0 and 1. If the two values
are equally probable, each number is said to carry one bit of information. A
sequence of twelve numbers represents 12 bits of information.

If we are using an alphabet with more than two symbols (e.g., the English
alphabet of 26 letters plus a space, punctuation marks, and numbers), each letter
in the message carries an amount of information which depends on the probability
of that letter occurring: the smaller the probability, the greater the information.
Thus, in a message using the English language, the letter E represents much less
information than an X or Z, since E is a common letter (its probability is high).

Actually, we go further and define the information in terms of an algebraic
equation. If the probability of a particular letter is pi, the information represented
is

1log2 (.)

or the logarithm of one over the probability. This particular logarithm is to the
base 2; in other words, what power must 2 be raised to in order to give 1/pi? For
example, if the probability of the letter E is 1/8, the information contained in the
E, when it appears, is

1og28=3 bits

since 2 must be raised to the power 3 (i.e., cubed) to give 8. For other proba-
bilities, we can evaluate log2 (1) by use of the log tables or a slide rule.*

pi

*For calculation purposes, it is useful to know that
log10 X10 = 3. 32 log2 X

since tables are most of ten given in terms of the logarithm to the base 10.

In other words, the engineer can determine a numerical value for the amount
of information per second in typical messages: telephone conversations, television
pictures, computer outputs, and so forth. Such a measure of information permits
the system designer to determine what type of equipment is required to transmit
the signal, whether the equipment is being used economically, and how the quality
of the communication system can be improved.

In this and the next chapter, we are not, however, interested in quantitative
measures of information. Rather, our interest focusses on changing signals::
signals in which the nature of the change is the primary feature of interest. In
particular, we wish to consider a few of the types of change which occur most
often in the man-made world, how these changing signals can be used to under-
stand system operation, and finally some of the ways in which systems can be
designed to control these changing signals.
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Problem
In writing or speaking, we ordinarily do not want to maximize the informa-

tion content. For example, if this book contained a maximum amount of infor-
mation per page, every letter, word, sentence, figure and so forth should come
as a surprise to the reader. Obviously such a book would be totally unreadable
and incomprehensible; any reasonable book reads smoothly as the reader is led
gently from one thought into the next. Such a smooth transition can be achieved
only by a large amount of redundancy--extra words and sentences to lead grad-
ually into a new idea.

The redundancy of the English language can be illustrated very simply as
follows. Write a logical sentence of at least ten words. For each letter (one
by one), flip a coin. If the coin comes up heads leave the letter untouched; if
tails, erase the letter. Approximately half the letters are now erased. Now give
the sentence with erased letter s to a friend and ask him to fill in as many of the
letters as possible.

The usual success in completing the sentence demonstrates that, even in
a simple sentence, half the letters are really unnecessary. In a paragraph or
page, even more letters could be omitted, and indeed in a full novel or a text-
book such as this, a few pages missing would normally not be particularly serious.

2. PREDICTION

In the preceding pages of this chapter, we mention a variety of systems or
situations in which the most important characteristic is that a signal of particular
interest changes as time progresses. Vt, e call such a situation a dynamic system.

*Throughout the remainder of the book, we use the term signal to refer to any vari-
able of particular interest--e. g., the speed of a car or the pressure in a sound wave.
The signals of interest are those which vary as time elapses. Thus, a signal is the
time variation of a physical quantity.
For example, the structure that is the Empire State Building is a dynamic system:
when it is hit by high winds, the building oscillates, with the top waving back and
forth over a distance of several inches. In this case, we can determine a model
of the system (the building) by observing the motion during a known wind; from this
model, we can then estimate the motion to be expected ire case of much stronger
winds which occur only very infrequently. In other words, we do not have to wait
until we have tested the building with every possible wind before deciding it is safe
for occupancy.

Very often we can use the signals from dynamic systems even more simply- -
for example, in orrler to predict the system signals into the future. The popula-
tion discussion of Chapter B-3 is an example: there we use the population curve
to predict the world's population a decade or more into the future. This use of
the signals of dynamic systems for prediction is so important in modern tech-
nology, we devote this section to two specific exarriples, which are particularly
important in this chapter because of our overall concern with changing signals.

Example 1: U. S. solid waste

If the United States is considered as one vast system (containing as elements
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the manufacturing plants, the transportation vehicles, the people, and the natural
and man-made devices), one of the important signals which can be measured is
the solid waste. Such solid waste material includes all the organic and inorganic
material which we throw away: the six million cars which are scrapped every
year, the appliances discarded, the refuse from construction and building demo-
licion, and the garbage generated by individuals. The United States, with less
than 10% of the world's population, creates appreciably more than half of the
world's rubbish. Our highly advanced technology and the associated high standard
of living lead to a national problem of increasingly serious magnitude: how can
we dispose of this solid waste economically and without dangerously fouling the
environment.

The magnitude of the problem is vividly portrayed in Fig. 1, * which shows

* Figures 1, 2, and 3 are taken from the report, "A Strategy for a Livable En-
vironment, " published for the U.S. Department of Health, Education, and Wel-
fare in June, 1967.

,r,=MMWM,

the quantity of solid waste produced per year in the United States since 1920. The
significance of this particular signal is perhaps clearer if we note that in 1965 more
than four pounds were produced each day for each person in the country. Further-
more, the rate of increase is appreciably greater than the rate of population in-
crease.

MILLION TONS
300

200

100

OVER 150
MILLION TONS
IN 1965

0
1920 1940 1960 1980

Fig. 1 U.S. solid waste
The importance and urgency of the problem derive from two principal_fac-

tors:
(1) In most cities, available land for dumps is being rapidly exhausted. At

the same time, the nature of the solid waste is changing: a few decades ago, the
rubbish was primarily garbage and ashes; today it includes vast quantities of metals,
plastics (e. g., non-returnable containers), and other new products, many of which
can not be economically burned without contributing to air pollution.

(2) We know very little about the effects of environmental pollution on the
physical and mental health of the individual. To what extent are mounds of junked
automobiles or polluted air, and the corresponding changes in man's environment,
responsible for the increases observed in mental illness, in urban unrest, and in
such physical illnesses as lung cancer. Even data such as shown in Fig. 2 are not
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easily interpreted since individuals living in the city may smoke more heavily,
may lead lives under greater nervous tension, and so forth. The problem of
evaluating the importance of environmental pollution is further complicated by
the realization that major effects on the balances of nature and the characteristics
of man are unlikely 4. o become evident for a generation or more (when it may well
be too late to reverse the established trends).

LUNG CANCER DEATHS
(per 100,000 pop. )

22

30

18

LESS
THAN

250,000

Fig. 2 Annual deaths from lung cancer
as a function of the size of the community.

Any logical approach to a national attack on this problem of solid waste
disposal requires that we predict the future extent of the problem Figure 1
shows the past history of the system: this particular output signal as a function
of time over the years 1920 to 1965. In order to use the data of Fig. 1 to predict
the system signal at least a few years in advance. This need for prediction arises
for two reasons:

(1) Data are usually available only some time after they are valid (in prob-
lems of this broad a nature, a year or two may be required). Thus, the curve
of Fig. 1 runs only to 1965, even though it was published nearly two years later.

(2) Design and construction of the facility require several years. A system
for which planning is started in 1968 may not be operational until 1974; if properly
designed, it should be useful for at least six years thereafter, so that the 1968
planning must be based upon the needs of 1980.

* T is evelopment lag (t e time between conception of the idea and operation of
the facility) plagues transportation planners. In the typical U.S. city, the public
and its political representatives commonly refuse to accept a new airport (for
example) until existing airports are hopelessly snarled. With the typical seven-
year lag between authorization of a new airport and operation, and the concurrent
growth in air travel, the air transportation system is hopelessly overloaded. By
the end of the seven-year interval and the opening of the new facility, we are
again close to overloading and a repeat of the entire cycle.

B-5.5



www.manaraa.com

The data of Fig. 1 can be used in two different ways to predict the solid
waste production in the future. First, we can merely extend graphically the
curve, as shown by the dashed portion of Fig. 3. According to this prediction,
there will be 250 million tons of solid waste produced per year by 1980.

MILLION TONS
300

200 rim
100 111

10VER 150
I MILLION

1
!TONS IN 1965

0
1920 1940 1960 1980

Fig. 3 Graphical prediction of U.S.
solid waste production.

Instead of a graphical approach, we can attempt an algebraic or analytical
prediction. We notice from Fig. 4 (which is just Fig. 1 redrawn here) that from
1950 to 1962 the production increased by 50% (from 100 to 150 million tons).
Similarly, in the 12 years from 1938 to 1950 the increase was 50% (from 67 to
100). It seems that every 12 years the production increases by 50%.

MILLION TONS
300

200

100

0
1920

..MID .011

OVER 150
MILLION

:TONS IN 1965

1940 1960 1980

Fig. 4 U.S. solid waste production

This property (that the multiplying factor is the same for every time inter-
val of equal length) is the characteristic which defines the algebraic curve or
function called the exponential. Thus, we know that, if we let y represent the
solid waste production, we can describe the curve of Fig. 4 by the equation

3y = A (-2- )
t/12

( 1)
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where A is adjusted to give the correct value in any one year. If, for example,

* In very general terms, an exponential is characterized by the fact that the
fractional change over a given time interval is the same, regardless of when that
time interval occurs. Thus, the exponential is described by three parameters

The time interval (we call this T)
The factor of change in that time interval (let us call this a)
The value at any one time

In these terms, the mathematical expression for the exponential is

A (a) t/ T

As an example, Professor Smith's total savings double every seven years.
His savings S are then represented by the equation

S -A (2) t/7

The quantity A can be found if we know his savings at any one time. For example,
at age 42 (t = 42) he had saved $20, 000. Then substitution gives

20, 000 = A (2) 6

20, 000 = A (64)
A = 312.5

At any age t, his savings S are given by the equation
S = 312.5 (2) t/7

we choose 1950 as the time when t = 0 (i. e., we measure time from 1950), A is
100 ani

y = 100 (-3-)
t/12 (2)

The fact that this equation is valid can be demonstrated by consideration
of the three specific years 1938, 1950, and 1962:

3
1950 Here t = 0 y = 100 (-2 ) 0 = 100

1938 Here t = -12 y = 100 (-3)-1 100
2

=
-§72

3
1962 Here t = +12 y = 100 (--2 )

1 = 150

=67

Equation (2) is an analytical or algebraic description of the data of Fig. 4.
This relationship can be used to predict solid waste production in the future. For
example, the equation states that in 1980 (t = 30 since time is measured from 1950),
production will be

330/12 3 2.5 32 3 1/2
y = 100 (-2.) = 100 (7) = 100 (7) (2) = 280 million tons.
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Why are the two answers different: the 250 predicted graphically and the
280 predicted algebraically? In both cases, we have made a guess. When we
worked graphically, we tried to extend the curve beyond the region for which data
are available. We attempted to find a smooth extension which continued past
trends, but clearly several different extensions are possible. The further into
the future we go, the larger the error is apt to '-e. When we worked algebraically
(and found the equation), we assumed that the given data can be represented by
an exponential -- an assumption which is only an approximation.

Which of the two answers should be used? This question can not be an-
swered, but one might conjecture that, if past trends continue, the solid waste
production will fall somewhere between 250 and 280 million tons annually by 1980.
Certainly unless specific industrial and governmental measures are taken to
modify these trends, we should plan a disposal system for 1980 which can ac-
comodate at least 250 million tons annually.

Example 2: Evolution of a new product
Example 1 illustrates the use of a system signal for prediction merely by

extending the signal into the future. We can also use system signals in a some-
what different manner: if we know the dynamic behavior of the system in the past,
we can predict the behavior in the future under similar circumstances.

Figure 5 shows the way in which profit or loss vary with time after an elec-
tronics company decides to produce a new product (for example, an electronic

PROFIT

3

RESEARCM'
DEVELOPMENT

LOSS MANUFACTURING

SALES
BUILD-UP

Fig. 5 Profit-loss history of a new product.

TIME (YEARS)

instrument for automatic measurement and control of the level of anesthesia
during an operation in a hospital). During the very early stages there are
research costs as the feasibility of the instrument is investigated and the possible
future market evaluated. Next come the development costs associated with con-
version of the research idea into a device which can be used by typical engineers

* Quite similar curves describe many other business operations. For instance,
when a new restaurant is opened, there is a long period of loss during construc-
tion and in the early states of operation while a clientele is being developed.
Several years may pass before the total operation begins to show a net profit.
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or technicians, which is sufficiently reliable and dependable, and which can be
manufactured at a cost which permits an ultimate profit.

When the decision is made to manufacture the product, a major increase
in investment is required. Not only must raw materials be purchased, but
manufacturing facilities must be acquired, detailed plans made for the equip-
ment, production workers trained, operating and maintenance instruction manuals
written and printed, * and sales personnel trained. During this period there are
still no sales to yield income to offset, at least partially, the rapidly increasing
investment.

* Such manuals institute a major output of the American printing industry. For
example, for one major military system, the various manuals total I, 500, 000
pages--the equivalent of 5000 three-hundred-page books, each replete with figures,
charts, and tables.

Finally, at time tA in Fig. 5 the first sales are made, but typically it is
some time later before sales build up to the poi z where there is any noticeable
decrease in the total financial investment in the product. If the product is suc-
cesful, sales then grow rapidly during a period when additional costs are pri-
marily steady, representing raw materials and manufacturing and sales personnel.

The importance of data such as shown in Fig. 5 is based upon several fac-
tors. First, if the comr any management understands the characteristics of this
curve and the factors which are represented, intelligent decisions can be made
early in the process. Clearly, the business manager who terminates manufacture
of a new product when the total loss reaches a pre-determined amount may be
stopping the process just before the rise into the net-profit region. Understand-
ing of the curve for a specific company and a particular type of product permits
the manager to detect unanticipated deviations from normal performance (e.g.,
unusually high costs because of unexpected needs for special equipment).

Furthermore, understanding of the data of Fig. 5 is the basis for logical
decisions about where to focus the investment of resources. In today's rapidly
changing technology, many products have a life span from conception to absoles-
cence of perhaps five years. In other words, five years after the product is con-
ceived (or invented), an improved version will be available from the ,-ompany
itself or a competitor. If this life span is largely pre-determined by the way in
which technology is changing, the importance of minimizing tB in Fig. 5 is ob-
vious. If this time to full production and sales could be cut from 3 years to 2.5
years, the subsequent life of the product would be increased from 2 to 2.5 years
(possibly with a corresponding 25% increase in total profit).

** An appreciable portion of the delay up to full production results from the prob-
lems of establishing manufacturing procedures: how to place the various com-
ponents within the equipment, how to design to ensure dependable operation, and
how to allocate tasks to the various production workers. The complexity and the
importance of these problems combine to provide a major economic incentive to
develop procedures whereby computers can be used to accomplish major portions
of this decision-making. Consequently, we find computers being used more and
more in industry to plan the production line, the layout of the equipment, and the
organization of various processes of machinery, soldering, and so forth.
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Concluding remarks
The two examples illustrate two somewhat different uses of system signals.

In the first case, the signal is used directly for prediction -- essentially by ex-
tension of the past, known signal into the future. In the second example, the sig-
nal is used as a basis for developing an understanding of the system -- and hence
for prediction in a new situation (the development of a new product).

In both cases, we use the signals to understand the dynamic system and its
behavior. In neither case can we hope to learn all the details about the internal
operation of the system; rather we use the signals to attempt to discover gross
or general properties of the system. Such understanding then provides the basis
for logical design and decision-making.

3. TYPES OF SIGNALS

Signals can be used to describe significant properties of dynamic systems,
as we saw in the preceding section. A system is dynamic if the observed signals
change with time in a manner which depends on the internal construction of the
system. In applied science, we are particularly interested in those dynamic sys-
tems in which the signals actually represent motion: the swaying of the Empire
State Building in a high wind or the bouncing of a car along a road. In this section,
we wish to focus our attention on such motional systems and to investigate what
types of signals occur in such cases. As a specific example, we consider the
problem of a car bouncing on a bumpy road. We use this system because

(1) It serves as an illustration of many problems involving motion,
(2) We can model the system on a simple analog computer,
(3) We can make measurements in the laboratory.
(4) In the next chapter we wish to consider similar problems in greater

detail.

Model for the automobile ride
To describe the frequently-encountered phenomenon of back-and-forth (or

oscillatory) motion, we start with the problem of finding a suitable model of an
automobile suspension system. The model must be simple, so that vvi can analyze
it, understand it, and deal with it quantitatively. The model should include the
essential features of the problem, so that no effect of crucial importance is omit-
ted. An acceptable model should describe the motion of the passengers in the car
under various conditions of operation.

The automobile can display various types of motion. For example, a pas-
senger can be jostled up and down, or from side to side. In an actual road situa-
tion, all of these must, of course, be given consideration. But because we are
attempting to discover how such motions come about in the simplest possible
fashion, let us single out only one of these motions for further study: namely, the
up-and-down motion.

What is the origin of the forces which give the mass of the car the motion
that can make the passenger feel uncomfortable? These forces must somehow
enter the model. We consider a wheel of the car going over a bump as in Fig. 6.
On a level road at any instant, there is a force, F1, from the road acting on the
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tire (this force is necessary to balance the gravitation force acting on the car).
The axle of the wheel is then at a distance, d1, above the road. When the car

Fig. 6 Forces on a tire going over a bump.

passes over a bump, the tire is flattened to some extent. As a result, the dis-
tance d

2
between the axle and the road is smaller than d1, and the elevation of the

axle is higher.

Not only is the tire compressed, but, with reasonable sized road bume6,
the spring which connects the car body to the axle of the wheels may also become
slightly compressed. Since this compression of both tire and spring is respon-
sible for the effect which we are anxious to study and to model, let us examine
it in greater detail.

With the car motionless on the road, we observe that the car body is in
equilibirum under the action of two sets of forces: the force due to gravity acting
downwards and the force due to the springs and tires acting upwards. If several
people enter the car, the car body again achieves a state of equilibrium but under
changed conditions; the greater downward force of gravity, which occurs because
of the increased weight of the passengers, produces a compression of the springs
and the tires, until the upward force arising from the increased compression of
these components becomes equal to the new downward force which arises from
this added weight of the passengers. An increase in the compression of the
spring and tires is thus equivalent to an increase in the upward force on the car
body. Therefore, the bump in the road which momentarily compresses the tires
and the springs produces an additional and sudden application of an upward force
to the body of the car.

Let us develop a very simple model of the up-and-down (vertical) motion
of a car. In Fig. 7(a) the car is reduced to an equivalent bicycle. Its mass is
lumped into a rectangle and each of the two rear wheels and springs as well as
the two front wheels and springs is replaced by a single wheel and spring. This
model can retain the general vibratory motions of the car in the vertical direc-
tion, but in addition, rotational motion about an axis perpendicular to the page is
also possible (e.g., the back up and the front down). In other words, this model
can pitch. The model now differs from the actual car since roll from side to side
is no longer possible through action of the springs.

The model of Fig. 7(a) is more complex than it need be since it permits
pitching motion. To simplify the model further, we replace it with the model
illustrated in Fig. 7(b), where the car now has the appearance of a unicycle.
Spring action now produces neither pitch nor roll, but only vibration in a ver-
tical direction.
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MASS M
AUTO

BODY

SPRING

(a) Equivalent bicycle

AUTO
BODY

SPRING

(b) Equivalent unicycle

Fig. 7 Simplified models of a car suspension
system.

We combine the entire mass of the car into the box above the spring and
also combine the four tires into the one wheel of the unicycle. But how can we
combine the four springs into a single spring? If we test springs made of various
materials we find that in all cases, the magnitude of a force(Af)required to extend
or compress a spring from a given length is proportional to the extension or com-
pression (-F,d) of the spring. The proportion., ity factor k is called the spring con-
stant. Thus,

Af = k Ad

This fact seems to have been observed first by Robert Hooke in 1678 and is called
Hooke's Law.

Let us return to our model of the up-and-down motion of the car. The car
actually has four springs, each with the same spring constant ka. If the car moves

wup or down, each spring deforms and exerts a force. Thus, if we are to have a
unicycle with a mass equal to that of the entire car and with a single spring which
can replace the four springs on the car, the unicycle must have a spring which is
four times as stiff as each of the car's springs. In other words, the spring must
exert four times the force of each of the car springs for a given deflection. Hence,
in our model the spring constant must be 4ka (For simplicity, we now call this
"total" sprit constant K).

We can simplify our model even further. The wheels and tires are not
particularly important in the study of the up-and-down motion of the car. As long
as we include their "springiness" in the spring of the model, we can eliminate
them. Thus our model is no longer a unicycle. It is simply a mass M on a spring
K as shown in Fig. 8., where K =
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Fig. 8 Simplified model of the up-and-down
motion of a car.

What does Fig. 8 have to do with an automobile? It certainly does not have
the appearance of an automobile. However, its appearance is not important. It is
simply a model of a special feature of the automobile that we wish to study. It is
an example of a dynamic model -- a system which we have isolated from a. complex
situation for special study. It is by no means the complete system with which an
automotive engineer must deal, and its value depends cm whether or not it helps
in understanding and designing an automobile to give a comfortable ride. The model
of Fig. 8 may appear to be over - simplified. On the other hand, such bold idealiza-
tions lead to progress in apparently unmanageable or complicated situations. For
example, we might use such a model to make the first choice of K in designing the
tires and springs. The mass M. of the car and passengers is approximately known;
the designer selects K to give a ride which is comfortable. He then has a general
picture of the kind of springs that have to be used in the detailed design.

We have idealized the combination of actual springs in the car, the "spring-
iness" of the tires, and the fact that there are four tires and springs; an of these
effects have been modeled by a single spring which is characterized by a single number
K, the so-called spring constant. If we measure force versus distance for an actual
car, we find that Hooke's Law is not followed precisely; fortunately, however, the
approximation does permit us to analyse the system and to obtain quantitative relation-
ships among the various factors entering into the design.

Signal generated by /Ty odel

To begin our quantitative study of the model, let us draw the model with refer-
ence to a coordinate system, as shown in Fig. 9. We have assumed that the shape of
the road has been given in the form of distance above the horizontal (yr) as a function
of the distance x along the road.

Yr

X

Fig. 9 Model of suspension system showing spring and coordinate system.
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The distance d is the rest or the static position of the mass M (automo-
bile body) above the hoo rizontal when the car is stationary. The displacement of
the body from that rest position is labeled y in Fig. 9, and it is the fluctuation in
y that the passengers feel when they are riding in the car. Thus, the automobile
designer is interested in the behavior of y over a variety of road shapes.

Let us examine what happens in a particularly simple situation; namely, a
flat smooth road with only one bump, as shown in Fig. 10. We assume that the
model car moves to the right at a uniform speed and passes over the bump. The
resultant displacement of the mass is indicated in Fig. 11. (for the moment, we
merely state this answer; we are not interested in the proof that it is the correct
answer). The mass, or car body, is set into oscillation by the bump, and this
oscillation persists for many complete up-and-down cycles. In other words, the
oscillatory motion is periodic: it repeats itself agin and again. The time taken to
complete one cycle is called the period: This motion is such that each cycle is ex-
actly the same as any other.

Fig. 10 A simplified road surface.

PATH OF MASS

Fig. 11 Vertical displacement caused by motion
over a narrow bump B1.

This particular motion--the periodic back-and-forth or up-and-down motion
of a body--is so important in the man-made world that we wish to digress now to
discuss the characteristics of this motion in more detail. In the next chapter, we
return to the consideration of automobile bouncing system; our purpose in introduc-
ing this section in this chapter is, thus, twofold: (1) to introduce the oscillatory
signal and show one type of physical system in which it appears, and (2) to provide
the background for the analysis of the bouncing motion in the next chapter.
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4. SINUSOIDAL SIGNALS

The curve representing the motion of the mass bouncing on a spring
(Fig. 11) has a particular significance; namely, it occurs in many situations.
For instance, in Fig. 12 such a curve is traced out by the end of a swinging pen-
dulum as paper from a roll is pulled beneath it at a uniform speed.

Basically, this curve results whenever a particular situation exists. The
crucial condition for generating this partkular motion is that as the mass departs
from its rest position, there must be a force tending to restore the mass to its rest
position. Furthermore, this restoring force must be proportional to the displace-
ment from the rest position. In the case of the mass-spring system, this force is
supplied by a Hooke's Law spring. In the case of the pendulum, the restoring force
is supplied by gravity and satisfies the proportional condition provided the ampli-
tude of the oscillation is small.

SWINGING
PENDULUM

PENDULUM BOB
WITH MASS

PAPER -

REST POSITION OF
PENDULUM BOB

40m)

Fig. 12 Tracing out the oscillatory motion of a swinging pendulum.

AMPLITUDE
-------f TOTAL

EXCURSION

Fig. 13 Definition of the excursion and amplitude of a sine wave.
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Because we encounter motion of this sort so often, it has been given a
special name, simple harmonic motion, or alternatively, sinusoidal motion. The
snaky curve itself is called a sine wave. *

*Actually, this is called a sine wave because the signal is related to time by the
trigonometric sine function. In particular, the signal y (which may be any physical
variable -- e.g., velocity, pressure, temperature, voltage) is given by an equation
of the form

y = A sin (I3t + e)

where A,13, and 0 are constants (numbers): e.g., y = 3 sin (2t + 0). For any
value of time t, we can then calculate the corresponding value of the signal y by
using trigonometric tables. In this equation, both Bt and 0 are measured in radians.

Sine waves have several properties which are particularly important for us.
Their size is usually stated as half the total excursion, as indicated in Fig. 13, and
is known as the amplitude. Sine waves of various amplitudes are shown in Fig. 14.

The frequency of a sine wave is the number of "up-and-downs" or full cycles
completed in one second. To make this clear, we note that, after the mass en-
counters the bump, it bounces up and down, and we can count the number of oscilla-
tions that take place in each second. This number is the frequency of the oscillation.

I

0.5
0

1.0

0
1.5-

0
2.0

0

go.

AMPLITUDE= I/2

t

Fig. 14 Sine waves of various amplitudes.
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1 SECOND

1 CYCLE /SECOND

2 CYCLES/SECOND

3 CYCLES/SECOND

4 CYCLES/SECOND

Fig. 15 Sine waves of various frequencies.

Sine waves of various frequencies are shown in Fig. 15. The frequency (denoted
by the letter f) can be found by counting the number of cycles or periods in one
second (the easiest way to do this is to count the number of crests or troughs).

Sine waves can be combined in a rather simple fashion. In the case of the
mass-spring combination, we can consider what would happen if there were two
bumps on the road instead of one, as in Fig. 16. If bump B1 were absent and
another bump were present further along the road (Fig. 17), the car motion would
be identical to that shown in Fig. 11, except that it would be shifted so that its
beginning would coincide with the position of the second bump B2 as shown in Fig.
17. (If B1 twere larger than B by some factor, s-by 1.5, the amplitude of the motion
resulting Trom Blwould be 1. times larger). The total motion must be some com-
bination of the motions caused by B and B separately. Indeed the total motion re-
sultigm from B and B. together is the sum2of the individual motions. This sum is
shown in Fig. 16.

In this example, it happens that the amplitude of the excursions is larger
than that produced by either B1 or B alone. This is not true for all situations;
if B2 could be moved slightly, we caft find a location for B such that the motion
ceases altogether. The motion curve then appears as in Ftg. 18.
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Yr

Yr

PATH OF MASS

B1 82

7/7/9/7 /7/777//7))/77777777/777 7/

Fig. 16 Total motion caused by both B1 and B2.

PATH OF MASS

y

Fig. 17 Motion resulting from bump B2 alone.

PATH OF MASS

Fig. 18 Resultant motion ceases when B1 and B2 are identical
and properly spaced.

0

Thus, the resultant motion depends on the distance separating B1 and B2,
as IA ell as on their relative magnitudes. This can be seen clearly in Fig. 19
where two oscillatory motions are added with different relative phases or different
times of peak values. If the vibratory motions are in phase (i. e., if they start to-
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gether), their sum is also oscillatory with the same period, but its amplitude is
the sum cf the amplitudes of the individual motions. If they are 180 out of phase
(i. e. , if they begin one-half cycle apart), their sum is zero since they are the nega-
tive of each other. If they are 900 out of phase (i.e., if they start a one-quarter
cycle apart), their sum is oscillatory with the same frequency or period, and the
amplitude is greater than the amplitude of any one but less than the sum of the
amplitudes. The sum of two harmonic oscillations, with equal periods but differ-
ent phases and different amplitudes, is always harmonic and of the same period.
In other words, the sum of sine waves of a given frequency is another sine wave
of the same frequency, biTt7i different amplitude.

This additive method is valid for finding the total motion no matter how
many bumps there are or what may be their relative positions.

(a)

Fig. 19 The sum of two oscil-
latory motions: (a) of
equal magnitudes and
in phase, (b) of equal
amplitudes and 180°
out of phase (step)
(c) of equal magnitudes
and 90° out of phase
(step).

B -5. 19



www.manaraa.com

yr
A

Bi B2 B3

X

Fig. 20 An illustration of describing any road surface
as a series of separate bumps.

We consider any road as if it were made of a series of "elemental" bumps all ex-
actly alike except for height, as indicated in Fig. 20. Thus, the additive property
permits us to compute by simple addition the motion for any road surface, once we
know the motion for an elemental bump.

In this section, we have introduced the idea of a sinusoidal signal: a signal
which varies periodically and is called simple harmonic motion when the signal re-
presents motion,

(1) Occurs when a mass oscillates on a spring or a pendulum
oscillates back and forth with small motion or in a wide
variety of similar physical situations (e.g., the motion
of the top of the Empire State Building in a wind or other
examples described in the next chapter).

(2) Represents periodic motion: each cycle is an exact
replica of every other cycle.

(3) Has the unusual property that the addition of two
sinusoids of the same frequency always results in
another sinusoid of the original frequency.

Other origins of sine waves

Actually the sine wave is a signal which occurs again and again in nature
or in the man-made portion of the world. Perhaps the most familiar example is
in music, where a pure note is a sinusoidal signal (if a sound signal, the sinusoidal
variation is in air pressure since transmission of sound corresponds to travel of
pressure waves through the air). In this sense, the frequency corresponds to pitch;
actually, the pitch is a subjective quality determined by how one reacts to the sound
heard, but pitch is determined by the frequency: the higher the frequency, the higher
the pitch.

Musical notes are normally not pure sine signals, but usually contain har-
monics (additional notes at frequencies which are multiples of the fundamental fre-
quency). For example, the A above middle C is normally about 440 cycles per second;
it's second and third harmonics are then 880 and 1320 cycles per second. Typical
musical instruments playing middle A have the sine components shown in Fig. 21.
The exact frequency of A depends on how the conductor chooses to have the instru-
ments tuned.

A more complex combination of sine signals exists in ordinary speech. Here
B-5. 20
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Fig. 22 shows the various frequency components which are present when a human
being speaks the successive sounds required for the phrase, "Speech we may see."
Just as in Fig. 21, the darkened areas represent the frequencies present as a func-
tion of time along the horiz ntal axis. Whereas the musical instruments yield sounds
which contain largely the primary note (440 cycles per second) and the harmonics, the
speech signal contains (during any one sound) a very large number of sine compo-
nentsf--many different frequencies existing at the same time.

14

12

FLUTE CLARINET OBOE TRUMPET TKIMPET,
MOUTHPIECE

TONE: .IVIIDDL:E a (44 ycresy

Fig. 21 A spectrogram of the sounds of some common instruments.
Depending on their shape, musical instruments emphasize
certain harmonics. (Reproduced from W. A. van Bergeijk, J. R
J. R. Pierce, and E.E. David, Jr. , "Waves and the Ear, "
Doubleday and Co. , Inc. , Garden City, N. Y. , 1960).
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Fig. 22 A spectrogram of human
speech, depicting the fre-
quency distribution of speech
power for successive time
intervals. (Reproduced
from W.A. van Bergeijk,
J. R. Pierce, and E. E. David,
Jr. , "Waves and the Ear, "
Doubleday and Co., Inc.,
Garden City, N. Y. , 1960).
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Fig. 22 illustrates the basic idea that any signal can be represented as the
sum of a group of sine signals of different frequencies. In many actual cases,

*This concept is termed the Fourier theorem. Fourier, a French applied mathema-
tician (1768-1830), made far-reaching contributions to problems on heat conduction;
his work has provided a foundation for modern communication engineering. At the
age of 12 he was already the author of superb sermons used by leading churchmen.
Fourier became a teacher of mathematics at the age of 26. He was instrumental in
revolutionizing science teaching by not using detailed notes, by standing while lectur-
ing, and by encouraging questions and comments from the students. He became an
important advisor of Napoleon and travelled with him on the Egyptian invasion. While
in Egypt he acquired the conviction that desert heat was healthy: the reason he spent
so much of the time in his later years swathed as a mummy and in rooms unbearably
hot.

the number of different components required to represent the actual signal is so large
that no one would ever attempt to determine the amplitude and frequency of each com-
ponent. Knowledge that such a decomposition can be made, however, is a major help
in the design of communication and control equipment (as we see in more detail in the
next chapter).

5. SIGNALS RELATED TO SINUSOIDS

The sinusoid is a particularly simple signal to generate and to analyse; in
the next chapter we consider various systems in which sine signals (or close approx-
imations) occur during normal operation. This particular type of signal is also sig-
nificant because many signals of importance are derived from sinusoids.

As we noted previously, both speech and music are sums of sinusoidal signals
for a short period of time. For example, a particular speech sound can be analysed
or decomposed into a set of sinusoids lasting for the duration of the sound. The radio
and television signals broadcast by commercial stations can be represented as sums
of various sinusoids.

These particular examples are rather complex because speech (for example)
involves a continually changing pattern of sounds. We can illustrate the importance
of the sinusoid by considering other, simpler signals. In the following paragraphs,
we consider radar and sonar as two important, yet relatively simple illustrations.

Radar ranging

Radar* operates on the following principle: a radio signal of very short dura-

*Radar is a word derived from radio, detecting and ranging. Initially developed during
the 1930's to test radio reflectio7g7iom the ionosphere (the layer of charged particles
over the earth), radar became a vital weapon of World War II when it was refined for
detection and location of ships and airplanes.

tion is transmitted; the sending equipment then is turned off, and the receiver detects
echoes returning from targets which reflect radio waves (e. g., metallic targets).
Since radio signals travel at contact speed (the velocity of light, which is approxi-
mately 186,000 miles per second), the time between transmission of the signal and
reception of the echo measures the distance from the radar set to the target (Fig. 23).

13-5.22



www.manaraa.com

ANTENNA

RADAR
TRANSMITTER

AND
RECEIVER

RADAR
TRANSMITTER R

D
RECEIVER

AN

RADIO
SIGNAL

AT
ANTENN A

TRANSMITTED
SIGNAL

(Q:

ECHO
SIGNAL
FROM

TARGET

Fig. 23 Radar system operation.
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Fig. 24 Antenna signals.

The operation is shown in a different way in Fig. 24. At a particular
instant of time, which we call t = 0, a short-duration sinusoidal signal is trans-
mitted from the antenna. At a later time (t 1), an echo signal appears at the antenna.
This echo is, of course, very much smaller than the transmitted signal, but it pos-
sesses the same shape. During the time from t = 0 to t = t1, the radio signal travels
from the antenna to the target and back again--a total distance equal to twice the
range of the target.

The numerical relationship between the time duration t1 and the range of
the target can be derived from the known velocity of light. Since light or radio
waves travel at 186, 000 miles per second, an echo appearing one second after the
transmitted signal (t1 = 1 second) corresponds to a target at a range of 93, 000 miles.
An echo appearing one microsecond (10 second or one millinoth6of a second) after
the transmission then means the target is at a range of 93, 000/10 or 0. 093 miles or
1/10. 75 miles. Thus, every 10. 75 microseconds corresponds to one mile of range.
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The relationship
10. 75 microseconds/mile

can be used to convert any me.asured time t
1

into the corresponding range. For
example, an echo delay (t1) of 90 microseconds means a range of

90 microsec = 8.4 miles10. 75 micros eE7mile

Radar direction finding

The above discussion indicates how radar is used to find the range of the
target--by measurement of the time that passes before the echo is received. Loca-
tion of the target also requires determination of its azimuth* and elevation angles

*The azimuth angle measures the bearing of the target on the surface of the earth.
For example, a measured azimuth angle of 35 means that the target bearing is 35
clockwise from our reference direction (which can be due north or, if the radar is
on a ship, can be the direction in which the ship is moving). Thus, the azimuth
angle merely locates the direction of the target along the earth's surface; the eleva-
tion angle measures how much above the earth's surface.

(i.e., its direction from the antenna and its altitude). If radar is being used to locate
a ship or object on the surface of the earth, it is only necessary to determine the azi-
muth angle of the target, since the elevation is known.

LESS RADIATION
MID,=IP.... ..._ PRIMARY RADIATION

PATTERN OF DIRECTION
RADIATION

(small amounts
off the axis)

Fig. 25 Radar antenna radiation or transmission.

The basic technique for target-bearing measurement involves use of a highly
directional antenna which rotates continuously. The directional property is commonly
achieved by using of a spherical or parabolic antenna "dish", with the signal trans-
mitted primarily along the axis of the antenna (Fig. 25). As the antenna rotates,
short pulse signals are transmitted frequently, so that in any direction several pulses
are sent. When an echo is received, we know that the target is in the direction of the
antenna at that particular moment.

There are various techniques for more accurate determination of the target.
For example, once a target is detected, we can stop the regular rotation of the anten-
na and switch to a mode of operation in which the antenna axis is wobbled or moved
slightly around the target to locate carefully the direction in which the echo is the
strongest. With these techniques, angular accuracies of much less than one degree
can be achieved in the determination of the angular position of the target. *
*The same tec niques can be used for measurement of the e evation angle and hence
the altitude) of the target. The antenna is varied up and down to sweep through the
various vertical angles.
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Radar measurement of range rate

If the radar system is being used to aim guns shooting at the target, we need
to determine the velocity of the target as well as its position. This velocity has
two components: the rates of change of the range and of the azimuth angle (again
for simplicity we consider tracking a surface target, so elevation is not of interest).
Either of these rates of change(i. e. 9 derivatives) can be determined by measurement
of the signal over a period of time and observation of the way it is changing. In the
case of range rate of change, however, there is an alternative approach which is
more accurate.

In 1842, Doppler* pointed out that, if we move toward or away from a source
'''Christian Johann Doppler (1803-1853), an Austrian physicist and mathematician,
who was interested in the color (frequency) of light emitted by the stars. The Dop-
pler principle permits astronomers to measure the rotation of stars and planets
(one side is moving away from the observer, one side toward the Earth, so the
colors are different in the light received from the two sides).

of light, radio waves, or sound, the observed frequency depends on the relative
motion of the observer and source. In particular, if we move toward the source or
the source moves toward us, the observed frequency of the signal increases (the
whistle on a train coming toward us is higher in pitch than with the train stationary).

The reason for this apparent change in frequency is clear if we consider the
transmission of sound from the train to our ear. If both the train and we are sta-
tionary, the train whistle sends out a sequence of air pressure peaks. Each of these
pressure maxima travels toward us at the speed of sound (about 1100 feet/second).
Our ear receives or senses the peaks as they pass by. Since we are stationary, the
times from transmission to reception for each peak are the same.

If we move toward the train, each successive pressure maximum is sensed by
our ear a little soon3r than it would be if we were further away and stationary. Hence,
as we move toward the train, the successive maxima occur slightly closer together.
Our motion toward the source tends to make the successive peaks in the sinusoid
occur more rapidly: hence the frequency seems to be higher.*

*Actually, the optical or radio Doppler effect is not identical with the acoustical or
sound phenomenon. In the acoustical case, it makes a difference which (observer
or source) is moving, motion of the medium affects the observed frequency, and
there is no effect of motion at right angles to the line from observer to source.
These differences are of secondary importance, however, and we can focus on the
similarity between the two phenomena.

In Doppler radar, a rate of change of range results in a shift in frequency be-
tween the transmitted and the received signal at the antenna. The shift :s given by
the formula

df =f
2vr (4)

Here Of is the shift in frequency (in cycles per second), f is the frequency of the
sinusoid transmitted during the short pulse (Fig. 24), c is the ve-.ocity of light and
vr is the rate of change of range (c and vr are measured in the acne units).
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The Doppler shift (the change in frequency) is very small compared to the
transmitted frequency. If the target and antenna are moving toward each other at
50 miles/hour (two ships moving full steam together), Eq. (4) indicates that

of 2
50 miles/hour 1

f (186000 miles sec) (3 00 sec hr) 6, 696, 000

If the frequency of the transmitted sinusoid is 3x109 cycles/second (a not unusual
value for such a radar system), the frequency shift

Af = 449 cycles/ second

The received signal is 449 cycles/second higher in frequency than the transmitted
signal. If in the receiver we "beat" the incoming signal against a sample of the
outgoing signal, we hear a note at about middle A on the musical scale. In actual-
ity, the receiver compares electronically the two frequencies, and generates an
electrical signal which indicates, according to Eq. (4), the rate at which the range
to the target is changing.

Thus, radar can be used for sensing or determination of the target's

Range
Azimuth angle

Elevation angle
Rate of change of range

In addition, the Doppler effect can be used to select (from all the targets spotted
by the radar) only those targets which are stationary; more commonly, we are in-
terested in just the moving targets, and we eliminate from the receiver output any
stationary targets. For example, in flight control near a city airport, we want the
radar screen (similar to a television screen) to show only the moving targets (the
aircraft), not the tops of tall, stationary buildings or nearby hillsides.

Bat navigation

One of the most impressive sights in the natural world is the exodus of thousands
of bats from Carlsbad Caverns, New Mexico at sundown. After spending the day-
light hours sleeping in the caves, the bats emerge at the mouth of the caverns,
circle a few times, and then head off in search of insects for food. The awesome
feature of this mass departure is the uncanny success of the bats in avoiding collis-
ions, as the air is darkened with the high-density traffic flow. To the human observer
the situation seems comparable to that which would occur in the center of a major city
if all traffic were able to move at 60 miles/hour in all desired directions with no re-
sulting accidents.

The success of the bat both in navigating among obstacles and in the capture of
insects in flight depends upon an extremely refined sonar system. * During normal

*Sonar (an acronym derived from sound navigation and ranging) was highly developed
during World War II for underwater detection (of submarines and of surface ships by
submarines). In contrast to radar, sonar uses sound waves, commonly at frequencies
slightly above the normal human range (e. gc , at 18, 000 cycles/second).

cruising in search of food, a bat emits short pulses about every 0. 1 second. During
the pulse of transmission, the sound signal is a sinusoid which varies in frequency
from about 100, 000 cycles/second down to 40, 000 cycles/second (Fig. 26). The
signal sent out is obviously not strictly a sinusoid, but rather is what is called a
frequency-modulated signal: i. e. , the frequency is modulated or changed during
the transmission. In this case, the frequency is steadily decreased.
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Presumably, a changing frequency is used so that the bat can recognize the
echo from his own signal (particularly when there are thousands of other bats in
the vicinity). The frequency change also could permit the bat to recognize pre-
cisely which part of the transmitted pulse generated a particular part of the echo.

When the bat discovers a target (an insect), the pulses are transmitted more
crequently (as often as 200 pulses per seond just before the capture), the frequency
Jf the transmitted sinusoid is lowered (varying from 30, 000 to 20, 000 cycles/second
during a pulse), and the pulses are shortened. Once the target is captured and con-
sumed, the normal cruising operation is resumed.

In the case of the bat, the signals are generated by the vocal chords, and the
ears serve as receivers. The location of the target with respect to the straight -
ahead axis (i. e., the angle to the right or left) is determined by the comparison of
the echo signals received at the right and left ears, just as a human being determines
the direction of a source of sound. If the object is in front and to the right of the bat,
the echo is received at the right ear slightly earlier than at the left.

Conclusion

In this section, we consider various modifications of sinusoidal signals: the
radar signal which is a burst or pulse of a sinusoid for a short duration, and the
bat's acoustical signal, which is a pulse of a "sinusoid" of continuously varying
frequency. In both cases, the sine signal is a basic starting point for the under-
standing of an important class of problems from the natural and man-made worlds.

6. CONCLUSIONS

This chapter is intended to serve as an introduction to the next few chapters.
In this chapter we consider a few types of signals which occur in physical systems;
in the next chapters, we study the ways in which such signals interact with systems
and can be modified by systems. This entire set of chapters is concerned with dyna-
mic systems: equipment and devices in which change is used to create particularly
desired results.
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The most important signal (or form of change) in both natural and man-made
systems is the sinusoid: the signal which changes according to the equation

y = A sin ((t + 0)
where

y is the signal (a position, temperature, velocity, voltage, etc. )
A is the amplitude (in the same units as y)
p = 27r f, where f is the frequency in cycles/second
t is time in seconds
0 is the phase angle, measuring the starting time, in radians.

We say such a signal has a sinusoidal variation with time: as time progresses, the
signal varies periodically back and forth from 0 to +A to 0 to -A to 0, etc.

The sine signal is important for two primary reasons:

(1) Many signals are either sinusoids or sums of sinusoids
for an appreciable period of time -- e.g. , speech, the
vibration of a building or car, and so forth. In the next
chapter, we study several systems characterized by
sinusoidal variations. Perhaps the most common
sinusoidal signal is the voltage appearing at the electric
outlet: in the United States, normally a sinusoid at 60
cycles/sec with an amplitude of about 162 volts (when
we say 115 volt signal, we refer to the amplitude divided
by /2-).

(2) Many signals are formed from sinusoids -- the radar and
sonar signals discussed in the preceding section, the tele-
vision or radio signals transmitted from the station to home
receivers, and so forth.

The preceding sections of this chapter are primarily focussed on an introduction
to such sinusoidal signals.

Not all signals are sinusoids

Many signals which occur in the real world are not sinusoidal in character
and have very little relation to sinusoids. While the basic objective of the chapter

*Fourier's theorem, mentioned in Sec. 5, states that any signal can be considered
as the sum of sinusoids of different frequencies. If there are thousands of compon-
ents, such a decomposition is not much help, however.

is to stress the significance of the sine signal, it is perhaps worthwhile to mention
three examples of non-sinusoidal signals.
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(1) The price of a given stock on the New York Stock Exchange is not a
simple sum of a few sine waves. If it were, we could look up the price
over a long period of time in the past, evaluate the different sinusoidal
components, and use this characterization to predict price variation in
the future. While numerous "applied mathematicians" and "engineers"
have in the past written articles arguing for such a possibility., it is
perhaps sufficient to note that these individuals are still working for a
living in more mundane occupations; none seems to be independently
wealthy.

(2) Figure 27 shows the acceleration signals as a function of time when a
stationary car with two passengers is struck from the rear by another
car moving at 20 miles/hour. Four separate, acceleration signals are
shown:
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Fig. 27 Kinematics of the supported and unsupported head
in a 20 mph rear-end collision. (from "Traffic
Safety, A National Problem," proceedings of a
Symposium of the National Academy of Engineering,
The Eno Foundation for Highway Traffic Control,
Saugatuck, Connecticut, 19 67).

(a) The head of the passenger, who has a head support
(b) The head support
(c) The door post (a part of the main frame of the car)
(d) The head of the driver, who has no head support
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The interesting feature of the four curves is the relative timing after impact. The
passenger's head moves approximately with the head support and generally with the
car body: hence the severe whiplash effects are minimized. For the driver with
no head support, however, the most severe acceleration (14. 6g or 14.6 tirties gravity)
of the head occurs well after the shoulders and the rest of the body have accelerated;
the driver's head is thrown violently backward, with the resulting whiplash injuries.
Thus, the supported head accelerates in synchronism with the shoulders; the un-
supported head is accelerated much later by forces transmitted through the neck.
When a head rest is not used, severe binding and shear stresses are applied to the
spine. The measurement of signals of this sort (on extensively instrumented dum-
mies) indicates the extreme importance of head supports in avoiding serioud injury
in rear-end collisions.

(3) Finally, Fig. 28 shows an experimental arrangement !.'or determination
of the dynamic characteristics of a human being in a simple steering or piloting
task. On the face of an oscilloscope, a target spot R is moved back and forth
horizontally. The position of a second spot is controlled by the man who moves
a joy or control stick. As the target spot moves, the man is asked to follow by
appropriate right and left motion of his spot. From experiments such as this

.
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(NO ov-sc
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(initiated by A. Tustin in England in the 1940's), it was found that the human being
can be characterized by:

A time delay (0. 2-0.4 second): the man observes an error,
but his response occurs a fraction of a second later.

Proportionality: the man positions his spot proportional
to the location of the target spot.

Differentiation: the man measures the velocity of the target
spot and uses this to predict the future location.

Integration: the man integrates the past error and corrects
accordingly.

Thus, the human controller is a complex, dynamic system; his behavior in such a
tracking task obeys complex laws or rules which depend upon many factors -- his
degree of fatigue, his motivation to succeed, etc.

In the experimental measurement of human beings in a control task such as
described above, the target spot must be moved at random. If the spot is moved
sinusoidally, the man quickly learns the regular nature of the motion and he is able
to anticipate accurately the future motion. The experiment then degenerates into a
measure of the man's ability to understand the exact character of the motion and to
adjust his joy stick accordingly.

These three examples are described merely to emphasize that there are
important situations in which the signals are very far from sinusoidal. In spite of
these examples, however, the sine signal is by far the most important in applied
science.

Other sinusoids

(1) Why is electrical energy distributed to homes by a sinusoidal voltage?

(2) How do radio navigation systems work?

(3) How can sine signals be used to measure altitude in an airplane?

We conclude the chapter with a brief consideration of each of these three questions
indicating some uses of sine signals.

(1) Why is a sinusoidal voltage variation used for distribution of electric
energy, rather than some other signal shape? The reason is very simple: the sine
signal is unusual in that addition of two sinusoids of the same frequency results in
another sinusoid at the identical frequency. As a result of this property, when the
character of the electric energy network is changed, the signal shape is not altered.
If the electric range is turned on in the kitchen, the voltage at the television set re-
mains sinusoidal in shape. If the voltage signal were triangular in shape, for ex-
ample, this property would no longer be valid: electrical equipment would have to be
designed to operate on a wide range of different voltage signals.
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(2) How can radio signals be used for navigation--i.e., for locating one-
self at sea or in the air? The Loran* system currently in use is one example of

An acronym from long range navigation.

such an application. Precisely timed pulses of sine signals are transmitted from
a widely separated set of radio stations around the world. On the ship, which is
attempting to determine its own position, these various signals are received. The
relative arrival times of the pulses from the different transmitters determine the
relative distances of the ship from the transmitting station. For example, if the
pulse arrival times from stations A and B are such that we know (d -d the ship
is located along a curve such as shown in Fig. 29. If signals can be received from
three stations, we can locate the ship's position. In actuality, the equipment is
designed so that the operator need only adjust a few dials to read his location auto-
matically.**

**More recently, signals from satellites at known positions have been used. Such
a location in orbit permits the transmitter to cover a larger portion of the earth,
and the radio signals are less susceptible to radio interference and poor reception.

Line along
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d
B
d

A
constant

TRANSMITTER
A

TRANSMITTER
B

Fig. 29 Principle of Loran operation.
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(3) How can sine signals be used in an aircraft altimeter? Several differ-
ent schemes are possible. We might simply transmit radar pulses downward from
the aircraft and measure the time until the echo returns from the surface of the
Earth. An alternative scheme involves transmission of a continuous, frequency
modulated signal downward. The frequency is steadily varied. The difference be-
tween the frequencies of the transmitted and echo signals then measures the time for
the round trip by the radio signal (Fig. 30). For example, if the transmitted fre-
quency is increasing at the rate of 100 cycles per/sec every microsecond, the in-,
crease is 1075 cycles/sec in 10.75 microseconds (the time required for a radio wave
to travel two mile. Hence, an altitude of one mile would correspond to a frequency
difference of 1075 cycles/second. In an actual altimeter, the frequency obviously
can not increase forever, and the actual frequency variation takes the form shown
in Fig. 31. Obviously, erroneous readings are obtained around the flyback time
(the short time in Fig. 31 when the frequency is decreasing back to the start of the
gradual, slew rise); but this error can be avoided automatically by proper design or
considered negligible if the flyback time is very short and the periods of correct echos
are relatively very long.***

***One might wonder why this altimeter is used instead of a simple radar system.
It turns out that electronically frequency can be measured very accurately. Hence,
when an unknown quantity such as altitude can be converted directly to frequency, it
can be measured with a high degree of precision.
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Questions for Chapter B-5

1. Use the data from Figure 1 of Section 2 to predict the solid waste production
in the year 2000. Both the graphical and algebraic techniques for prediction
should be used. How valid is this prediction?

Use Figure 5 from Section 2 to answer the following questions.

(A) Why is there no profit for over three years?

(B) What is the significance of tA?

(C) Why is it important to minimize tB?

Why is the problem of a car bouncing on a bumpy road being studied in this
chapter?

4. The approximate elongations of a
spring produced by each of a series
of forces is record in the following
table.

(A) Make a graph of force versus elongation.

(B) What is the value of the spring constant?
(C) From the graph, predict the elongation

produced a force of 1. 3nt and 4nt.

Force Elongation
(newtons) (meters)

0. 0

0. 5

0. 00

0. 02

1.0 0.04
1. 5 0.06
2. 0 0. 08

2. 5 0.10
3.0 0.12

5. (A) What is the relationship between the period and frequency of a sine wave?

(B) If a sine wave had a period of 1/20 of a second, what is its frequency?

6. Two sine waves of the same frequency, had amplitudes which differed by a
factor of two. If one was out of phase with the other by 180 , what would be
the result of combining them.

7. In a radar system, we can not transmit a second pulse until all important
echoes from the first pulse have been received. If the maximum target range
of any significant echoes in 100 miles, what is the minimum allowable spacing
between successive transmitted pulses? This antenna rotates through a full
360°; during this rotation, we wish to send at least 7200 pulses (20 every de-
gree). What is the maximum allowable speed of rotation of the antenna?

8. Radar echoes have been observed from both the Moon and the planet Venus.
What length of time is required in each case for the radar echo to return?

9. A police radar is used to measure the speed of cars on a thruway. If the trans-
mitted frequency is 3000 megacycles/second (3x109 cycles/second), the police
radar antenna is stationary, and the car is moving at 80 miles/hour, what is the
Doppler shift? If the equipment must measure car speed to an accuracy of ± 2%,

what accuracy is required in the measurement of the difference of the transmitted
B-5. 34
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and received frequencies? How would these answers be

mitted frequency were shifted to 3x10 10 cycles/second?
second?

changed if the trans-
to 300 megacycles/

10. (A) If an insect is 18 feet from a bat, what is the time delay between trans-
mitted and echo pulses (the velocity of sound in air is approximately
1100 ft/sec)?

(B) What is the maximum range of the bat cruising sonar system if an eacho
must be received before the next pulse is transmitted?

(C) If the bat approaches the insect at the relative speed of 10 ft/sec and the
transmitted frequency is 30, 000 cycles/second, what is the received fre-
quency?

11. Why is the transmitted frequency lowered when the bat is homing in on an
insect? (The bat by this time is moving directly toward the target and angular
position measurement is less important).
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APPENDIX

Editorial note: The following material is reprinted from a government report pub-
lised in June of 1967*. These pages emphasize the importance of change and the
problems which are generated by change. The appendix is not an essential part of
the course, it is not necessary background for any o:(e the ideas in subsequent chap-
ters, but it is an excellent description of the dynamics of technology as they influence
the lives of all citizens.

*Appendix A is Chapter 1 of "A Strategy for a Livable Environment, " the report by
the Task Force on Environmental Health and Related Problems to the Secretary of
Health, Education, and Welfare, June, 1967.

THE ENVIRONMENT

At the two-thirds point of the 20th Century, man has discovered that he can-
not act toward his surroundings with the abandon of a caveman. For countless thou-
sands of years, man has treated this planet as a dumping ground, boundless in its
ability to absorb insults.

But now, the factory smokestack and the automobile tailpipe, symbols of in-
dustrialization and exploding population, combine to foul air, land, and water, and
to change in both obvious and subtle ways the quality of life.

For generations we assumed Nature had the ability to absorb an increasing
number and variety of environmental insults. And for a while it did. Now nature
has rebelled. The lashback today threatens metropolis, town, and village, and to
a growing degree open countryside as well. Sadly deficient in precise knowledge of
the growing and changing array of hazards in our environment, we know enough to
realize that we must mend our ways.

We cannot keep adding more wastes in the air.

We cannot turn more rivers and streams into open sewers, and lakes into
cesspools.

We cannot befoul the land with the discards of abundance.
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In short, we cannot engage in biological and chemical warfare against our-
selves. Our health and well-being--and those of future generations--are at stake.

Man lives in delicate equilibrium with the biosphere--on the precious Earth-
crust, using and re-using the waters, drawing breath from the shallow sea of air.
While these can cleanse themselves, they can do .so only to a finite point. That
point is being reached and passed in many places in the United States. It is not
only necessary that we take preventive action, it is also urgent that we take steps
to restore the quality of our environment.

The public will have to understand the limitations of Nature. Understanding
begins if we think of the Earth as somewhat like a submarine or a space capsule.
Air and water supplies in all three places, are limited. Some of us understand
what is required to survive and work effectively in hostile cosmic regions or deep
in the sea. All of us must understand what is required to live in the finite capsule
of air, water, and land that is our own environment.

Present Situation

This Chapter outlines the background against which the Task Force recom-
mendations were made. The Task Force has examined the history of environmental
health problems and has scanned the broadest possible variety of these hazards to
Americans.

It has reviewed the current condition of mants living space. When viewed in
its fullest context, the rapid deterioration of finite amount of water, air, and soil
makes it clear that present trends cannot be permitted to contunue. In fact, they
must be reversed.

Not only should the rate and direction of environmental pollution be changed,
the citizenry also needs protection from a conglomerate total of environmental health
threats --not only air and water pollutants, but also combinations of these, plus noise
and crowding, safety hazards, and other factors.

An individually-acceptable amount of water pollution, added to a tolerable
amount of air pollution, added to a bearable amount of noise and congestion can pro-
duce a totally unacceptable health environment.

It is entirely possible that the biological effects of these environmental
hazards, some of which reach man slowly and silently over decades or generations,
will first begin to reveal themselves only after their impact has become irreversible.

Thus, one paramount conclusion resulted from the many diverse lines of inquiry
which the Task Force pursued: An effectively coordinated environmental health pro-
tection system is mandatory, one predicated on the basic premise that the environ-
ment affects man's mental as well as his physical health and welfare. An approach
toward environmental health protection which is limited to concern for less than the
total range of hazards that do or may exist in man's environment must be viewed by
the Department as inadequate.

The problems arising from our productivity and growth are truly unprece-
dented. No other nation has produced so many things for so many people.

The history of our exploitation of the environment since early last century
reveals many examples of misuse and abuse and unsuccessful attempts to control
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the environment. From an agrarian economy concentrated along the East Coast,
the country grew into the breadbasket of the world; from a handful of mills along
tumbling New England rivers sprang an industrial giant that has no equal in all the
world. To serve this industrial revolution came the skilled and unskilled from far
and near to cluster into the growing cities. Through the wonders of research and
the marvel of mass production came new products and new proc,..,-sses --adding up
to a higher standard of living than the world has ever known.

Today's world is profoundly different from that of even a few decades ago.
But progress has been purchased at a price: a million traffic fatalities since
World War II; cities bathed in a sea of pollution; lives stressed by noise, squalor,
and crowding.

Our mode of living requires that we travel, so we accept the risk of being
maimed or killed on the highway or on city streets. Some 50, 000 die each year
from traffic accidents. However, the driver or the pedestrian has some control
over his safety. He can readily appreciate the acute nature of the danger to his life
and limb. But many environmental hazards are more subtle and are beyond an in-
dividual's perception and control.

Neither the growth of metropolitan populations nor their accelerating de-
pendence on fossil fuels for energy and motor vehicles for transportation serve to
explain fully why many cities have reached or are approaching a crisis in air pollu-
tion.

To understand the situation we need to look at the dynamics of free air.

It might at first seem that there is enough air to absorb whatever insults
man might hurt at it. However, when pollutants are released to the atmosphere,
the degree of mixing is confined to the lowest levels of the air mantle. Luckily
this air, especially in the United States, is usually in motion. Consider what
happens when pollutants are released.

Under normal conditions, the atmosphere has a large capacity to cleanse
itself. Nuclear testing has given us knowledge of the global transport of air masses.
Radioactivity from atomic bomb tests in the Lob Nor desert of Sinkiang Province in
China can be detected in the United States because the air mass circulates around the
planet in a matter of weeks.

When the winds stop blowing, local pollution hazards can increase. Techni-
cally, one talks of an atmospheric stasis which means a calm condition or dead air.
Given a prolonged stasis, the pollutants concentrate in the lowest levels of air and
then trouble begins. This is most common during the fall and winter when there is
less sunlight. Then the ceiling tends to dip closer to the ground so that under con-
ditions of a temperature inversion the mixing air is confined to a layer approxi-
mately 2500 to 1500 feet above city streets and factories.

Future in Doubt

It is difficult to predict future levels of sulfurous air pollution from the
burning of fossil fuels, because such a predicition must be predicated on assump-
tions about trends in fuel use and advances in pollution control technology. Authori-
ties agree that premium fossil fuels will be in short supply in the foreseeable future
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and that reliance will have to be placed on coal. According to one authoritative
estimate, continuation of present control practices would see a 100 percent rise
in sulfur levels by 1980 as a result of increased consumption of sulfur-bearing
coal and oil, that is from a present level of 24 million tons per year to 48 million
tons annually. If even the most rigorous control technology were developed and
applied, sulfur emissions by 1980 would reach an estimated 32 million tons per
year. Electric power plants, which account for about half of the sulfur discharged
to the air as a result of fuel burning, will continue to be a major source of sulfur-
ous pollution long after nuclear energy becomes a mainstay source of electric power,
simply because so many coal and oil burning power plants will be built in the next
25 years to supply rising demands for electricity.

Without nuclear power and without controls, the year 2000 would look very
black from a pollution standpoint. Then the sulfur dioxide pollution would amount
to 75 million tons from power-plants alone (annually). Long before that time, with-
out benefit of controls and nuclear power, Americans would have to restrict their
use of electricity or pay very much more for the kilowatt because of the scarcity of
cheap low-sulfur coal and oil.

Efforts to bring an end to environmental hazards often have proceeded with-
out adequate attention to their effect. For example, the development of efficient
braking systems for motor vehicles- - surely a life-saving technological achievement- -
has led to increased exposure of the public to asbestos particles produced by the grad-
ual wearing of brake linings. ere is scientific basis for concern that these particles
may promote lung cancer over long periods of time.

Similarly, the change from hard to soft detergents, a move aimed at reducing
a serious water pollution problem, led to the introduction into the environment of a
new compound which is believed to be killing large numbers of fish by attacking their
eggs.

In essence, then, the changes that have occurred in this country as part of its
transition from a small agrarian nation to an urbanized, industrialized world power
have given rise to environmental problems which we understand but little. This lim-
ited understanding has caused a failure of our society to recognize the full impact of
environmental hazards on human health and welfare, and it has led to sporadic, frag-
mentary efforts to meet some of the most flagrant of environmental problems.

We stand at a point in history when our capacity to enhance or degrade the en-
vironm.er.t is literally beyond reckoning, but we do not now fully understand how to use
this capacity for the benefit, rather than the harm, of our and future generations.

Not only have we overwhelmed many of nature's processes for environmental
stability, we have misued, without knowing it, biological processes upon which the
preservation of life depends. By allowing tiny amount of pesticides to enter our
waters, we have set in motion processes that can lead to the destruction of birds
that feed on fish, that feed on plants, that draw the pesticide from the water. Our
ignorance of the consequences of our deeds !law be innocent, but it is ignorance we
can no longer tolerate.

Nor are the effects of environmental change manifested solely in threats to
man's physical well-being. The pressures of our industrial culture must certainly
produce threats to social and psychological welfare. Less difficult to measure, per-
haps, these psycho-social effects of environmental hazards are nonetheless cause for

B-5. 39



www.manaraa.com

concern in a Nation where mental and social ills are recognized as major problems.
Are they not to a significant degree major environmental problems? It seems cer-
tain that they are.

Additional Evidence

Man's affluence has its source in the extraction and exploitation of natural
resources. But the use of these resources has resulted in an environment abused.
Strip mining has left ulcers on the land. Our forests have been empited of their
timber. Dust storms of the thirties recall the price of land neglect. Chemical
agriculture has laid down a oarrage of deadly insecticides, fungicides, and herbi-
cides to kill off plant pests and diseases; but the residues infiltrate the food chain.
Banks of rivers are littered with the accumulated debris of fish kills due to these
water-borne residues.

In a recent report dealing with the increasing pollution of the air, water, and

land, the National Academy of Sciences National Research Council stated: "Pollu-
tion is an undesirable change in the physical, chemical, or biological characteristics
of our air, land, and water that may or will harmfully affect human life or that of
other desirable species, our industrial processes, living conditions and cultural
assets; or that may or will waste or deteriorate our raw material resources....
Pollution increases not only because as people multiply, the space available to each
person becomes smaller, but also because the demands per person are continually
increasing, so that each throws away more year by year. As the earth becomes

more crowded, there is no longer an 'away.' One person's trash basket is another's
living space."

The trends of population expansion and urbanization will continue to funnel
increasing loads of pollutants into the environment and will place increasing strains
on both health and environment-protection resources.

In 1900, the population of the United States was seventy-six million, and- -
though our cities were steadily growing at that time--urbanization was still a trend
of the future. Our population today approaches 200 million and may reach 235 mil-
lion, by 1980. Already, nearly three quarters of this Nation's inhabitants are den-
sely packed into 200 urban centers. Demographers estimate that before the next
turn of the century, "super-cities" will stretch from Boston to Washington, Buffalo
to Milwaukee, San Francisco to San Diego. The problems of these huge urbanized
land masses will be vastly greater than those of the present cities.

The impact of population growth, technology, and urbanization on man's en-
vironment is accelerating. There is iio sign of any stability or plateauing in man's
collision with.his environment. As people crowd more densely together, the en-
vironment changes with increasing effect--often unpredictably, and what is most
serious of all, possibly irreversibly.

Inadequate Effort

The United States needs to take stock of its environmental condition and to
recognize the urgency of the situation.

Americans make more things than other people, and they make far more than
half of the world's trash. This year's rubbish would fill 36 lines of box cars stretching
from coast to coast.
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Ours is a mobile society. Think, for example, about the advances made
in locomotion. Before the beginning of the 20th Century, an ambling railroad train
provided man's fastest regular means of transportation. The Wright brothers'
flight in 1903 was shorter than the distance from wing tip to wing tip of today's jet
transports. This year Americans will fly a total of 70 billion passenger-miles in
commercial airliners at speeds up to 650 miles per hour. We are now planning tc
fly the Supersonic Transport (SST) nearly three times that fast.

This year, the 90, 000, 000 motor vehicles in use will burn an estimated
60, 000,000, 000 gallons of gasoline, or about 700 gallons for the typical automobile.
This means that each automobile in the country will discharge in a single year over
1, 600 pounds of carbon monoxide, 230 pounds of hydrocarbons, and 77 pounds of
oxides of nitrogen.

Even through the potential deleterious effects of radiation have been known
for several decades, recent incidents concerning uranium miners indicate the general
gaps in our understanding of the need to control radiation hazards in the environment.
At the present time many uranium miners in the United States are being exposed to
excessive amount of radioactive gases. These gases decay into radioactive daughter
products and by attaching to particulate matter in the air, enter the miners' lungs.
Such exposure has produced a marked increase in the incidence of lung cancer among
uranium miners. With this situation existing for many years, the Federal Radiation
Council has nevertheless failed to come forth with standards for the occupational ex-
posure of uranium miners. Approximately 10,000 miners have been employed for
same period in underground uranium mines prior to January 1, 1967. Dr. Leo Gehrig,
Deputy Surgeon General of the Public Health Service, estimates that 529 of these min-
ers will die of lung cancer. Now we realize, too late, that over a thousand such miners
in the United States have been exposed to cancer-producing radiations which may be ex-
pected to reduce their life expectancy by several years.

Infectious hepatitis appears to be directly related to contaminated drinking
water, but very little is known about how the disease-causing agent gets in the water
or how it can be taken out.

Traces of cobalt were used in beer manufacturing for foam control, and when
the side effects of cobalt were fully examined, the practice was rapidly stopped. But
no one knows what the total effect of that foamy-cobalt interlude on the public will be

The Food and Drug Administration has estimated that the American people are
being exposed to some 500, 000 different substances, many of them over very long
periods of time. Yet fewer than ten percent of these substances have been catalogued
in a manner that might provide the basis for determining their effects on man and his
environment. Again, our ignorance of potential hazards is perilously great.

Too Little Known

Too often, the undramatic nature of an evolving health hazard has kept it off
page one and out of news broadcasts.

Public information usually focuses on dramatic disclosures or on pollution
episodes where an acute health hazard results. For this reasons, most people have
some knowledge of smog, fallout, fish-kills, and drug abuse.
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Modern technology brings man into contact with a vast array of substances
and processes new to the human race which have the potential of causing new health
problems.

Man is not defenseless against the onslaught of modern technology. Know-
ledge gained through research--and applied--can enable him to deal with the great
majority of environmental hazards. But he is still a long way from adequate under-
standing of the intricate web of life which links plants, animals, and man.

Health experts have repeatedly pointed out that grave, delayed physical
manifestations can result from repeated exposure to concentrations of environ-
mental pollutants so small that they do not make one ill enough to send him to the
doctor. Environmental pollutants can have cumulative effects, especially because
they accumulate in certain tissues and organs.

These effects can take delayed forms such as cancers, emphysema, and
reduced life span, and they can even extend to following generations. In other words,
the most serious effects of pollution may be those whose effects are delayed and
subtle--those which we do not fully appreciate or take steps to prevent.

We have learned how to enclose a hundred men in a metal capsule and keep
them healthy for prolonged periods of time below the surface of the ocean. In these
nuclear submarines men live only a few feet from a nuclear power plant. They live
in a closed system which is carefully organized and monitored to provide a compatible
environment. Even more stringent life-support systems are required for manned
spacecraft.

People on Earth must begin to think of their planetary home as a closed sys-
tem--as a kind of huge spacecraft, which, in fact, it is.

The thrust of the Task Force's Report is that we must begin to manage all
aspects of the environment so as to ensure the physical and mental well-being of the
American people.

Overview Essential

Since the environment and man's relationship to it are so complex no simple
solution or simple approach can be sketched out which will allow the Federal Govern-
ment to correct overnight centuries of misuse.

The tools available to the Nation to do the job are insufficient. Jurisdictional
disagreements among those responsible for environmental protection create problems
and too often inaction. Nowhere is there the capability of making the enlightened as-
sements of policy affecting the economy.

Yet one is no less important then the other. A weak economy means human
distress. A diseased environment also means human distress.

The Task Force recommends that the Secretary of Health, Education, and
Welfare, as a major step toward meeting the challenge of environmental protection,
urge the President to seek Congressional authorization to establish a Council of Eco-
logical Advisors to provide an overview, to assess activities in both the public and
private sectors affecting environmental change, and to act in an analyzing capacity;
to be in a commanding position to advise on critical environmental risk-benefit de-
cisions; and finally, to be instrumental in the shaping of national policy on environ-
mental management.
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Even the abbreviated effort which the Task Force has made to examine the na-
ture and extent of the Nation's environmental problem leaves no doubt that there must
be a radical increase in the national commitment to protection of man's health and
welfare from threats -- present and future--in the world about him. The recommenda-
tion above is but one of many presented in this report. To all of them the Task Force
assigns the highest order of importance.

The practice of medicine is becoming more and more imbued with the con-
cept of treating the whole man, not merely a collection of his symptons. This same
concept is urgently needed in our efforts to deal with problems of environmental health.

Our orientation must be to the total man in his total environment, to the
cumulative effects of a growing number of environmental hazards on a receptor- -
man- -who can respond to them in an incredibly complex manner. It is not suffi-
cient to narrow our interest to the effect of air pollution on the lungs, the effect
of noise on the ear, or the effect of crowding on the psyche. We must identify the
interrelationships of these and all other forms of environmental insult on the whole
man, on his physical and mental health, his productivity, and his ability to enjoy
the fruits of our culture.
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Chapter B-6

CHANGE IN DRIVEN SYSTEMS

B -6,1 INTRODUCTION

One day we read the following news item in the newspapers; "The U.S.
Air Force has launched a revolutionary Spy-in-the-Sky which can sweep over
military bases in any foreign country, take pictures and return packages of film
on command from ground controllers. It may even operate a television system
which could be monitored from the ground! "

On another day we read: "Senator Warren G. Magnuson called today for
an international agreement to protect the world's fish supply. He said he will
propose a conference for such an agreement when he talks to Russian officials
in Moscow later this week."

In a Memorandum of Decision of the Superior Court of the State of
California, we read the following: "This is an action for wrongful death. The
action arises out of an automobile accident which occurred on May 16, 1960 on
a highway known as the Carmel-Pacific Grove Cutoff in Monterey County,
California. On the date in question, Don Wells Lyford, a young man 16 years
of age, was driving a 1960 Corvair automobile on this highway and proceeding
in the direction of Carmel. The highway involved was a two-lane highway
through a wooded section with a number of curves. At the exit of a right hand
curve and the beginning of a curve to the left, the Corvair automobile went
across the center line and into the opposing lane of traffic and collided with a
Plymouth automobile which was proceeding toward Pacific Grove. Don was not
thrown from the Corvair but, as a result of the collision, he received certain
injuries from which he died before reaching the hospital. Don, the only occupant
of the Corvair automobile, made no statement before his death relative to the
cause of the Corvair going out of control. "*

What do these three stories have in common? They are all news; they
are all interesting; they are all unfinished stories; they may have some
immediate or long range effect on our lives. But what is important in these
stories is that they all involve modeling and they also involve dynamics. We do
not attempt to predict the action of a satellite, or the future of the world's fish
supply, or the action of a 1960 Corvair, without building a model first.

It is a matter of common experience that an automobile does not give
an equally comfortable ride under all circumstances. Moving along a rough
country road at low speeds, the passengers may be jostled uncomfortably. On
the other hand, it is also possible to encounter a bumpy ride on a smooth super-
highway at certain speeds of travel. Sometimes, a reduced speed gives a
smoother ride; at other times, a higher speed gives a smoother ride. An ol0
car may .give a poor ride at all speeds.

It is also a fact that skyscrapers bend in the wind by a discernible
amount. The top of the Empire State Building can deflect as much as several
inches when a modest wind is blowing. Under some conditions, such motions
can have surprisingly large effects on activities in the building.

Power or telephone transmission lines strung between poles can inter-
act with the wind and "sing". When the wind blows over a thin wire, little

*Memorandum o Decision #771-098, July 29, 1966
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whirlpools of air called eddies are formed on the downwind side of the wire. The
same phenomenon can be observed in flow around a stationary object in water;
as for example, in the flow of a river around a bridge abutment. In the case of
wires, the sound of the singing transmission line may be annoying. Then again,
in a steady wind, wires can vibrate with enough intensity to break.

All three of the above phenomena are examples of behavior (22-and-down
motion of the car, to-and-fro motion of the skyscraper, "singing", of the trans-
mission line) that can be described by the same model. This model applies to a
great variety of physical situations from the design of measuring instruments to
the development of radio receivers. It is increasingly useful in the compre-
hension and the management of complex situations such as those found in eco-
nomic and biological systems.

B-6.2 MODELING THE AUTOMOBILE RIDE
To describe the frequently-encountered phenomenon of back-and-forth

(or oscillatory) motion, we will start with the problem of finding a suitable model
of the automobile suspension system .> The model must be simple, so that we
can analyze it, understand it, and deal with it quantitatively. The model should
include the essential features of the problem, so that no effects of crucial
importance are omitted.

An acceptable model should describe the motion of the passengers in
the car under various conditions of operation. This motion requires dual treat-
ment: firstly, we must consider its direction and speed and secondly, we
should consider the forces that are responsible for the effects that are produced.

Let us consider for the moment the second aspect of this motion the
relation between the forces which act and the motion which is produced. We
have already studied this general relationship between force, mass and motion
in section B-3.8. Although we have not as yet examined the nature of the forces
which produce the up-and-down motion of the car, we are aware of the fact that
these forces are related in some manner to the "bumpiness" or irregularity of
the road. Our model of the system should therefore include road irregularity
as an important element. The other element of importance in our model must
be related to the mass of the car and the passengers.

The automobile can display various types of motion. For example, we
can be jostled up and down, or from side to side. In an actual road situation,
all of these must, of course, be given consideration. But because we are
attempting to discover how such motions come about,in the simplest possible
fashion, let us single out only one of these motions for further study; namely,
the up-and-down motion.

We shall discuss the origin of the forces which give the mass of the car
the motion that can make the passenger feel uncomfortable. These forces must
somehow enter the model. We will consider a wheel of the car going over a
bump as in Fig. B-6. 1. On a level road at any instant, there is a force, F1, from
the road acting on the tire (this force is necessary to balance the gravitation force
acting on the car). The axle of the wheel is then at a distance, dl' above the road.
When the car passes over a bump, the tire is flattened to some extent. As a
result, the distance d between the axle and the road is smaller than dl' and the

iselevation of the axle is higher.

B-6. 2
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Fig. B-6.1. Forces on a tire going over a bump.

Not only is the tire compressed, but, with reasonably sized road bumps,
the spring which connects the car body to the axle of the wheels may also become
slightly compressed. Since this compression of both tire and spring is respons-
ible for the effect which we are anxious to study and to model, let us examine it
in greater detail.

With the car motionless on the road, we observe that the car body is in
equilibrium under the action of two sets of forces: the force due to gravity
acting downwards and the force due to the springs and tires acting upwards. If
several people enter the car, the car body again achieves a state of equilibrium
but under changed conditions: the greater downward force of gravity, which
occurs because of the increased weight of the passengers, produces a
compression of the springs and the tires, until the upward force arising from
the increased compression of these components becomes equal to the new down-
ward force which arises from this added weight of the passengers. We note that
an increase in the compression of the spring and tires is thus equivalent to an
increase in the upward force on the car body. Fundamentally, therefore, the
bump in the road which momentarily compresses the tires and the springs
produces an additional. and sudden application of an upward force to the body of
the car.

Let us develop a very simple model of the up-and-down (vertical)
motion of a car. In Fig. l3-6. 2a the car has been reduced to an equivalent
bicycle. Its mass is lumped into a rectangle, and each of the two rear wheels
and springs as well as the two front wheels and springs have been replaced by a
single wheel and spring. This model can retain the general vibratory motions
of the car in the vertical direction but in addition rotational motion about an axis
perpendicular to the page is also possible (e.g., the back up and the front down).
In other words, this model can pitch. The model now differs from the actual
car since roll from side to side is no longer possible.

The model of Fig. B-6. 2a is more complex than it need be since -It per-
mits pitching motion. To simplify the model further, we replace it with the
model illustrated in Fig. B -6. 2b where the car now has the appearance of a uni-
cycle. It will neither pitch nor roll, but will only vibrate in a vertical direction.

B- 6. 3
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(a) Equivalent bicycle

AUTO
BODY

SPRING

(b) Equivalent unicycle

Fig. B-60 2. Simplified models of a car
suspension system.

We combine the entire mass of the car into the box above the spring
and also combine the four tires into the one wheel of the unicycle. But how can
we combine the four springs into a single spring? If we test springs made of
various materials we find that in all cases, the magnitude of a force Of re-
quired to extend or com ress a spring from a given length is proportional to
the extension or compression (Ad) of the spring. The proportionality factor k
is called the spring constant. Thus,

Af = k Ad

This fact seems to have been first observed by Robert Hooke in 1678 and is
called Hooke's Law. Note that the additional force Of exerted by a sprin which
is extended (or compressed) by zsd is - k Ad. It is equal and opposite to the
force exerted on the sprite If the spring is stretched (or compressed) through
a distance Ltd from its unstretched state, it will therefore exert a force

Lf= -k&d
The negative sign simply tells us that the spring always exerts a force in the
opposite direction from that in which it is deformed. A stretched spring tends
to shrink and a compressed one tends to extend to its undeformed length.

Let us return to our model of the up-and-down motion of the car. The
car actually has four springs, each with the same spring constant k. If the
car moves up or down each spring deforms and exerts a force .kad. Thus, if
we are to have a unicycle with a mass equal to that of the entire car and with a
single spring which can replace the four springs on the car, then the unicycle
must have a spring which is four times as stiff as each of the car's springs. In
other words, the spring must exert four times the force of each of the car
springs for a given deflection. Hence, in our model the spring constant must
be 4 ka

(For simplicity, we shall now call this "total" spring constant k).

We can simplify our model even further! The wheels and tires are not
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particularly important in the study of the up-and-down motion of the car. As
long as we include their "springiness" in the spring of the model, we can
eliminate them. Thus our model is no longer a unicycle. It is simply a mass
M on a spring k as shown in Fig. B- 6.3., where k = 4ka.

Fig. B-6.3. Simplified model of the up-and-down
motion of a car.

What does Fig. B-6.3 have to do with an automobile? It certainly does
not have the appearance of an automobile. Its appearance is not however
important. It is simply a model of a special feature of the automobile that we
wish to study. It is an example of a dynamic model -- a system which we have
isolated from a complex situation for special study. It is by no means the
complete system with which an automotive engineer must deal, and its worth
will depend on whether or not it helps in understanding and designing an auto-
mobile to give a comfortable ride. The simple model of Fig. B-4.3 may appear
to be over-simplified. On the other hand, such bold idealizations lead to progress
in apparently unmanageable or complicated situations.

We have idealized the combination of the actual springs in the car, the
",springiness" of the tires, and the fact that there are four tires and springs;
all of these effects have been modeled by a single spring which is characterized
by a single number k, the so-called spring constant. If we measure force versus
distance for an actual car, we find that Hooke's Law is not followed precisely.
For purposes of design, the assumption of Hooke's Law is important. With it,
we have produced a model that we can analyze. Thus, we can obtain quantitative
relationships between the various factors entering into the design.

B- 6.3 A STUDY OF THE MASS-SPRING MODEL
To begin our quantitative study of the model, let us draw the modelwith

reference to a coordinate system, as shown in Fig. B-6.4. We have assumed
that the shape of the road has been given in the form of distance above the
horizontal (yr) as a function of the distance x along the road.

The distance d is the rest, or the static position of the mass m (auto
body) above the horizontal when the car is stationary. The displacement of the
body from that rest position is labeled y in Fig. B-6.4, and it is the fluctuation
in y that the passengers feel when they are riding in the car. Thus, the auto-
mobile designer is interested in the behavior of y over a variety of road shapes.
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Fig. B -6.4. Model of suspension system showing spring
and coordinate system.

Let us examine what happens in a particularly simple situation;
namely, a flat smooth road with only one bump, as ..down in Fig. B -6. 5. We
assume that the model car moves to the right at a uniform speed and passes

Fig. B-6.5. A simplified road surface.

over the bump. The resultant displacement of the mass is indicated in
Fig. B-6.6 (for the moment, we merely state this answer; we are not interested
in the proof that it is the correct answer). The mass, or car body, is set into
oscillation by the bump, and this oscillation persists for many complete up-and-
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down cycles. In other words, the oscillatory motion is periodic, it repeats

PATH OF MASS

Fig. B-6.6. Vertical displacement caused by motion over a
narrow bump B1.

itself again and again. The time taken to complete one cycle is called the
period. This motion is such that each cycle is exactly the same as any other.

The mass-spring model has also another important aspect. From
Fig. B-6.6 we can see that bump B1 sets the mass and spring into an up-and-
down oscillation whose form is, traced out in that figure. This smooth, snaky
curve has a particular significance; namely, it occurs in many situations. For
instance, in Fig. B -6. 7 such a curve is traced out by the end of a swinging
pendulum as paper from a roll is pulled beneath it at a uniform speed.

Basically, this curve results whenever a particular situation exists.
This motion occurs when a mass is subjected to a force which opposes its dis-
placement. The crucial condition for generating this particular motion is that
as the mass departs from its rest position, there must be a force tending to
restore the mass to its rest position. Furthermore, this restoring force must
be proportional to the displacement from the rest position. In the case of the
mass-spring system of Fig. B-6.5, this force is supplied by a Hooke's Law
spring. In the case of the pendulum, the restoring force is supplied by gravity
and satisfies the proportional condition provided the amplitude of the oscillation
is small.

Because we encounter motion of this sort so often, it has been given a
special name, simple harmonic motion, or, alternatively, sinusoidal motion..
The snaky curve itself is called a sine wave.

Sine waves have several properties which are particularly important for
us. Their size is usually stated as half the total excursion as indicated in
Fig. B-6.8, and is known as the amplitude. Sine waves of various amplitudes
are shown in Fig. B-6.9. The frequency of a sine wave is the number of "up-
and-downs" completed in one second. To make this clear, we note that after the
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SWINGING
PENDULUM

PENDULUM BOB
WITH MASS

PAPER

ft

/M./ REST POSITION OF
PENDULUM BOB

Fig. B -6. 7 Tracing out the oscillatory motion of a
swinging pendulum.

1 AMPLITUDE

ITOTAL
4 EXCURSION

Fig. B- 6.8 Definition of the excursion and amplitude of
a sine wave.
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t
Fig. B- 6.9. Sine waves of various amplitudes.

AMPLITUDE = 1/ 2

I

=1.5

=2.0.0

mass in Fig. B-6.6 encounters B1, it bounces up and down, and we can count
the number of oscillations that take place in each second. This number is the
frequency of the oscillation. Sine waves of various frequencies are shown in
Fig. B-6.10. We note that the frequency (denoted by the letter f) of each can be
found by counting the number of cycles or periods in one second (easiest way to
do this is to count the number of crests or troughs)

Sine waves can be combined in a rather simple fashion. In the case of
the mass-spring combination of Fig. B-6.6, consider what would happen if
there were two bumps on the road instead of one, as in Fig. B-6.12. If bump
B were absent and another bump was present further along the road (Fig. B-4.11)
the1n the car motion would be identical to that shown in Fig. B-6.6, except that
it would be shifted so that its beginning would coincide with the position of the
second bump B2 as shown in Fig. B-6.11. (If B1 were larger than B2 by some
factor, say 1.57 then the amplitude of the motion resulting from B1 would be
1.5 times larger.) However, bump B7 is not alone (Fig. B-4.12). 1The total
motion must be some combination of the motions caused by B1 and B2
separately. Indeed the total motion resulting from B1 and B2together is the
sum of the individual motions. This sum is shown in Fig. B- 6.12.

In this example (Fig. B-6.12) it happens that the amplitude of the
excursions is larger than that produced by either B1 or B4 alone. This is not
true for all situations; if B2 were moved slightly, we can find a location for
B2 such that the motion ceases altogether. The motion curve would then appear
as in Fig. B -6. 13.

B- 6. 9
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1 SECOND

1 CYCLE/SECOND

2 CYCLES/SECOND

3 CYCLES/SECOND

4 CYCLES/SECOND

Fig. B-6.10. Sine waves of various frequencies.

Yr
PATH OF MASS

Fig. B-6.11. Motion resulting from bump B2 alone.
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Yr. PATH OF MASS

//// // / / /l/ //1 »I ///////////// //
Fig. B-6.12. Total motion caused by both B1 and B2.

PATH OF MASS

X

Fig. B-6.13. Resultant motion ceases when B1 and B2
are identical and properly spaced.

Thus, the resultant motion depends on the distance separating B1 and
B2 as well as their relative magnitudes. This can be seen clearly in
Fig. B- 6. 14 where two oscillatory motions with different relative states are
added. If the vibratory motions are in phase (i.e., if they start together) their
sum is also oscillatory with the same period, but its amplitude is the sum of
the amplitudes of the individual motions. If they are 180° out of phase. (i.e., if
they begin one-half cycle apart), their sum is zero since they are the negative
of each other. If they are 90° out of phase (i.e., if they start a one-quarter
cycle apart), their sum is oscillatory with the same frequency or period, and
the amplitude is greater than the amplitude of any one but less than the sum of
the amplitudes. The sum of two harmonic oscillations with e ual eriods but
different startin times or ases and different am litu es is alwa s armonic
an
fre uenc is anot=ne wave of the same fre uenc but of different amplitude.

o t e same perio In of er words, t e sum of sine waves of a given

B- 6. 11
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(a)

(c)

(b)

Fig. B-6.14. The sum of two oscillatory motions: (a) of equal
magnitudes and in phase, (b) of equal amplitudes
and 1800 out of phase (step) (c) of equal magni-
tudes and 90° out of phase (step).

B-6.12
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This additive method is valid for finding the total motion no matter
how man bum s there are or what may be their relative ositions. We can
consider any roa.i as if it were ma e of a series of "elemental" umps all exactly
alike except for height, as indicated in Fig. B-6.15. Thus, the additive property
permits us to compute by simple addition the motion for any road surface, once

yr
a

B B2 B3
aft "'

Ns fill,
-'6111111,'"

.0... 530
OM fie IMP

9

Fig. B-6.15. An illustration of describing any road surface
as a series of separate bumps.

we know the motion for an elemental bump. This particular idealized model
based on Hooke's law is a very useful one. (This method does not work however,
for a spring which does not follow Hooke's Law.)

B-6.4 VERTICAL MOTION OUTPUT AS RELATED TO ROAD
WAVINESS INPUT
We have already observed that an abrupt disturbance produced by a

bump in the road will set our model of an auto body into sinusoidal motion. If
we reexamine Fig. B-6.6 and visualize the behaviour of the car, we may
describe the event as follows: the input to the mass-spring system is B1 which
produces a sinusoidal motion in the mass-spring system. Figure B-6.4
represents a more general case. Here the input to the system at any instant is
expressed by the ordinate yr at that instant, and the output of the system is
represented by the ordinate y. The block diagram of Fig. B-6.16 illustrates
this relationship.

Yr
ROAD SHAPE

milAUTO

SUSPENSION
am.

BODY DISPLACEMENT

Fig. B -6. 16. The relationship between y and yr.
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We are interested in the relationship that exists between y and y
This relationship must be such that the car passengers are not subjected io
values of y (body displacements) which produce an uncomfortable ride. This
condition must hold for all reasonable values of yr.

One method of investigation of the effect of the variations in yr involves
the use of the principle of superposition - the additive method which was outlined
in the previous section. This would be laborious, and there would be no concise
way of summarizing the results from the many different situations selected for
testing. It would be useful however, if we could find an input which resulted in
an output of identical shape or form. Then we could merely compare the
magnitude or size of these motions. For instance, we would be able to conclude
that "a road disturbance is reduced in size by a factor of five". This would be a
very concise conclusion.

Happily, there is an input shape which permits such a convenience. It
is the sine wave. If the road is sinusoidal in shape, the motion of the car body
is sinusoidal. The output sine wave has the same frequency but the amplitude
may be different (larger or smaller) and the output sine wave may be delayed in
time. These effects are illustrated in Fig. B -6. 17, where we have labeled the
input and output amplitudes as Yr and Y. By comparing these values, we can
state concisely the effect of the suspension in smoothing out road roughness.

OUTPUT
AMPLITUDE Y y(output)

INPUT
AMPLITUDE Yr

Fig. B-6.17. The effects of sinusoidal road shape on
auto motion.

Let us consider, then, a car moving along a sinusoidal road, as
illustrated in Fig. B-6.18, and measure the ratio of output amplitude to input
amplitude, lily . Let us measure this ratio for a variety of sinusoidal
frequencies of die road and plot the results as indicated in Fig. B-6.19.
The most prominent feature of these measurements is that, at one frequency,
marked f, the output amplitude may become much larger than the input
amplitudeo. This frequency is known as the natural frequency, or the resonant

B-6.14
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Fig. B-6.18. Car traveling on sinusoidal road.

"Tr

Fig. B- 6. 19. Amplitude vs frequency data for car moving
on sinusoidal road.

frequency of the model. It is so called because this is also the frequency which
results when the system is abruptly excited, and then left free to vibrate. This
situation is also illustrated in Fig. B-6.6.

Excitation of a system at its natural or resonant frequency results in a
very large output because each successive excitation reinforces the output from
the preceding ones. Figure B-6. 12 shows two successive disturbances reinforc-
ing each other. If B2 were followed by B3' B4' and so on, each at an appropriate
point to add to the size of the output, it could grow very large indeed. In the
case of sine-wave excitation, the bumps are not as abrupt, but each successive
crest of the sine wave reinforces the preceding crests.

Let us redraw Fig. B-6.19, and plot on the horizontal axis the ratio of
the excitation (road) frequency to the natural (car) frequency (Fig. B-6.20).
The ordinate axis (vertical axis) is the ratio of the output to input amplitudes
(car's amplitude to road amplitude) as before. We see that the curve has three
general regions of different types, labeled 1, 2, and 3. If the excitation
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Yr 5
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3
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I 2 3 4 f/fo

Fig. B-6.20. Amplitude response-excitation curve
for undamped mass-spring system.

frequency is small in comparison to the natural frequency (region 1), the output-
input ratio is nearly unity; if the excitation frequency is almost the same as the
natural frequency (region 2), the output is many times as large as the input;
finally, if the excitation frequency is very large compared to the natural
frequency, (region 3), the output amplitude approaches zero, since the ratio
approaches zero.

It is easy to interpret Fig. B-6.20 in terms of our experience with
automobiles. In the up and down direction, the natural frequency fo of an auto-
mobile is typically of the order of 1 cycle per second. On a gently rolling road
with peaks one mile apart, and in a car moving at 60 miles per hour, the
observer in the car sees a "bump" or peak once every minute, or at the frequency
of 1/60 cycles per second. In this case, f/f is 1/60 divided by 1 or 1/60.
This is region 1 of Fig. B-6.20, which s ays°that the amplitudes of the car and
road should be the same. And this is indeed our experience; the tires and the
car body ride in almost perfect unison, each going through the same sinusoidal
motion.

On the other hand, we may move at a speed of 30 miles per hour (44
feet per second) on a concrete highway made of slabs whose joints are 44 feet
apart. In this case, it takes one second to go between the joints; the observer
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in the car thus sees an excitation of 1 cycle per second, so that f/f is unity.
What happens? Suppose the car is going up and down at its natural frequency
and is at the bottom-most part of its swing when it hits a joint between slabs.
The tires momentarily drop down, causing the spring to stretch. This applies
a net downward force to the car mass, and makes it go down further, thus in-
creasing the amplitude of its swing. But the next time it is at the bottom-most
part of the swing, the car again hits a joint, which again increases the swing.
If the car maintains its speed, the process is repeated over and over again, and
the car will begin to oscillate violently.

This is the phenomenon of resonance, which we mentioned before. It
occurs when the excitation fre uenc is e ual to the natural fre uenc .
Fig. B-4.20 shows a particular situation in which (f f = 1) the output amplitude
becomes five times greater than the input amplitude a resonance. In actual
systems this magnification factor is sometimes so great that either something
breaks or additional damping forces come into play. These forces limit the
oscillation to a finite value because they oppose the motion itself. In lightly
damped systems, the response can be quite violent when the excitation is at the
resonant frequency. We will examine damping forces later in this chapter.

Finally, let us suppose that we are traveling over a brick road, where
the joints between bricks are perhaps 1/2 foot apart, at 44 feet per second
(30 miles per hour). Then we meet a joint every 1/88 of a second. The excita-
tion occurs at a frequency of 88 times per second. The ratio, f/fo, is now 88,

uand from Fig. B-6.21 the output response is negligible. We can understand this
if we remember that a stationary mass does not move until a force is applied.
The force in our model must come from the extension or compression of the
spring. If the spring is weak, not much force is transmitted to the mass by the
spring, and the mass does not undergo much acceleration and motion.

"Weak" is a relative term. What does a "weak" spring mean? Our
model has shown that a weak spring is one that produces a low natural frequency
compared to the excitation frequency. If such a spring is used, the car's inertia
causes it to remain steady. Thus on a brick or cobblestone road, we can gr '; a
smooth ride even though the wheels are jiggling up and down quite energetically.
On a superhighway, we often find that we get a more comfortable ride by speed-
ing up. We then cause the car to go over the joints at a faster rate, and cause
the car to pass beyond the resonance region of Fig. B-6.20, (region 2) into the
high-frequency region (region 3).

B-6.5 THE EFFECTS OF DAMPING
In the automobile suspension system, damping forces are provided by

the shock absorbers. A simplified drawing of a shock absorber is shown in
Fig. B6.21. In order to move the plunger, a force must be applied to compel
the oil to flow from one side of the plunger disk to the other. Thus, the shock
absorber tends to oppose relative motion between whatever is attached to its two
ends. The force necessary to move the two ends A and B relative to one another
depends on the relative velocity of the ends.

B-6. 17
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TO CAR BODY

PLUNGER

OIL

OIL PASSAGE
HOLE

OIL

TO WHEEL AXLE

Fig. B-6.21. Automobile shock absorber.

Thus, shock absorbers are desirable additions to a car suspension in
the configuration indicated in Fig. B-6.22. We can appreciate the effect of the
shock absorber by comparing Figs. 13-6-.23 (a) and (b).

SPRING

DAMPER
(SHOCK
ABSORBER)

Fig. B-6.22. Model of suspension system
including shock absorber.
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(a)

(b)

Fig. B-6.23. The effect of the shock absorber on
up-and-down motion of the car.

Part (a) is the same as Fig. B-6.6 which shows the car's undamped
response. With the shock absorber,part (b), the oscillating motion dies out
quickly (sometimes we say "damped" out). Thi- action makes for a much less
"bouncy" ride.

It us consider the effect of the shock-absorber damping from the
sinusoidal point-of-view. That is, how is the car body amplitude on a sinusoidal
road affected by the shock-absorber damping? Its effect is indicated in
Fig. 13-6.24 in a plot similar to Fig. B- 6. 20. Again, we note that the output
over input amplitude is plotted on the ordinate axis The first thing that we notice is
that, in a damped system, the possibility of an infinite response disappears,
although for a lightly damped system, the response can become quite large. We
find that the model gives a natural, quantitative definition of "light" and "heavy"
damping. Light damping exists when th- amplitude ratio y/yr is large for
frequencies close to the resonant frequency.

B-6. 19
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y

Yr 5

UNDAMPED

DIRECTION OF
INCREASED DAMPING

4 f/ f4

Fig. B-6.24. Amplitude response-excitation curve
for a damped mass-spring system.

We observe from the model that the general features of the response
excitation curve are preserved when we add damping to the model. We still
have three general regions, marked 1, 2, and 3 in Fig. B-6.24. Again in
region 1, where the ratio filo is small, the ratio of the amplitudes is almost
unity. Unless the damping is very high, excitation near the natural frequency
leads to a large response(region 2). Finally, in region 3, an excitation of high
frequency results in a negligible output. It is because of the similarities in the
general features of the damped and the undamped case that it is useful to study
the latter. On the other hand, if we design systems that are heavily damped,
where we must reduce the effects of resonance, the undamped model is an over-
simplification. It then becomes crucial to include damping in the model from
the beginning of our model construction.

13-6.6 CALCULATION OF NATURAL FREQUENCY IN DYNAMICAL SYSTEMS
We have observed the importance of the natural frequency in the

suspension system and we shall note its importance in many other instances.
Indeed, the concept of natural frequency is central to our entire study of
dynamical systems. It is not only the frequency at which thy; system oscillatesif disturbed, it is also the frequency at which the system may be driven into
violent oscillations.
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For the simple, undamped case we have examined, the natural fre -
quency is given by a very simple formula:

f =
o 2 Tr

where the spring constant k is expressed in newtons/meter, the mass m in
kilograms, and the frequency f in cycles /second. This formula holds generally
for mechanical systems if k and3rn are properly interpreted. For example,
suppose you wish to determine the natural frequency of the up and down motion
of your car. You could get into the car and have a friend measure how much the
car deflected because of your weight. It is now possible to compute the stiffness
k by dividing the weight by the deflection. With the mass of the car known, the
natural frequency can be calculated. Similarly, to compute the frequency of
horizontal to-and-fro motion, you would merely have to determine the stiffness
of the spring in a horizontal direction. This could again be done by applying a
known horizontal force and measuring the corresponding deflection. In some
cases, however, it is easier to measure the natural frequencies with a stop
watch.

But, in designing something, it is important to know the natural fre-
quency before that something is built. In such cases, the above equation for
natural frequency can be useful indeed. Let us illustrate its applicability and
universality with a few examples.

As a start, we can verify the equation by means of the vertical
oscillations of a car. If your weight is 600 newtons (about 140 lbs), and you
find that the car sags 0.005 meters (about 1/41 when you sit in it, then the
corresponding value of k is

600k = (7.-0-67 = 120,000 newtons /meter

If the car has a mass of 1739 kg (about 4000 lbs) and your mass
weight in newtons

9.8 is 600/9.8 = 61 kg, the combined mass is 1800 kg.

f
o

=
27r

1

8
/120,000

00
1.30 cycles /second

1

You can try this experiment using your own weight and a car whose weight you
know to see how closely the calculated frequency agrees with what you measure
with a stop watch.

As another example: suppose you are the chief engineer for the design
of a 300-meter (about 1000 ft.) high skyscraper which will be of square cross
section 30 m (about 100 ft.) on each side (Fig. B-6.25). You are informed that
the tenant in the building will be a laboratory in which sensitive, equipment that
must not be excited at frequencies above 2 cycles per second is used. You
know of a similarly sized and designed building in Europe that is known to
deflect as much as a 0.005 m (about 1/4"),inch at the top in gale-force winds
which exert a pressure of 600 newtons /m4 (about 14 lb/ft2). It is also known
that the building's mass is about 1011 kg. Can you assure the tenant that such
equipment will not be damaged?

It may appear to be fantastic to use our equation for natural frequency

B- 6. 21



www.manaraa.com

-01 14- 0.005 m

I 1

I

,

300 m

30m

Fig. B-6.25. Skyscraper moment caused by wind.

for anything as huge as a skyscraper. After all, a skyscraper does not have the
appearance of a mass and a spring. What does our equation have to do with this
problem?

As we stated in the introduction to this chapter skyscrapers "wave in
the wind", just as the data of the problem indicate . We can therefore model
the skyscraper as a vertical reed with the entire mass of the building con-
centrated at the top, as in Fig. 13-6.26. The springiness of the reed will oppose

Fig. B-6.26. Preliminary model of skyscraper.
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the horizontal deflection of the mass. The idealization can be carried further
and we can replace the reed with a horizontal spring (Fig. B-6.27). This brings
us back to the simple mass-spring system.

Fig. B-60 27. Final model of skyscraper.

Of course, a skyscraper is as complicated a vibratory system as an
automobile. There are other ways in which the structure can oscillate, in
addition to its sway in the wind. It can oscillate up and down, or it can twist
around a vertical axis through its center, to name just two types of vibration.
In a detailed examination of this problem, all these types of oscillation would
be investigated. But you may know or guess that in this case these other
oscillations are of higher frequency than the type pictured above, and that they
are also very highly damped. It may then be possible to get a rough estimate of
the important natural frequency by determining the stiffness from the data given
for the European building.

Knowing the deflection of the top is the maximum for the building, we
can assume that the average deflection is one-half of this value. But since our
estimate can only be very crude, at best, let us simply assume that the spring
deflects 0.005 m for a force equal to the total sidewise force corresponding to
a pressure of 600 newtons /m2 (about 14 lb/ft2). As the area over which this
pressure acts is a rectangle 300 m times 30 m, the total f-,rce can be computed
by multiplying the pressure by the area over which it acts.

force = 600 newton/m2 x 9000 m2 = 5.4 x 106 newtons

The stiffness k is therefore
5.4 x 106 newtonsk = 1.08 x 109 newtons /meter

5 x 10-3 meter

From the equation we therefore calculate the resonant frequency as

91 1.08 x 10f = -..... x = 0.017 c -cles/second
o 277. 1011

Thus, if the building is excited at 2 cycles a second as it may well be

B-6. 23
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by passing trucks), the ratio of the excitation to natural frequency is about
2.0/0.017 = 125 to 1. From Fig. B-6.20, practically none (If this frequency
will be apparent to the tenant. If our estimate were in error by a factor of 10,
so that the excitation frequency is only 12.5 times the natural frequency, we
would expect a negligible amount of a 2-cycle excitation to get through. Hence
we can assure the tenant that it is improbable that his equipment will be dis-
turbed.

As a final example, imagine the following situation. You are an
architect who has designed a dramatic house for a client. The house is on a
cliff overlooking the Pacific Ocean (Fig. B-6.28). A bridge will be required

ROAD

2.5" SAG DUE TO
WEIGHT OF BRIDGE

44111.11/illi

Fig. B -(. 28. Bridge over gorge connecting road
to house.

over a gorge to connect his house to the road. The client is worried about the
effects of possible earthquakes, and you discover that earthquake waves in this
area have frequencies below this two-cycles per second. You have already
calculated the amount of sag in the main suspension cables when the deck mass
is in place. This has been estimated at a maximum of 0.065 m (about 2.5 inches),
you can calculate the natural frequency of the bridge. Is your design adequate?

Of course, all of the previous precautions hold; there are many
possible ways that the bridge can oscillate. A more careful study is required,
but, once again, even a rough answer can be useful. Investigators are con-
tinually amazed how often such rough calculations turn out to be accurate and
informative. Let us begin with the construction of a model.

The stiffness of the bridge is mainly the result of the fact that a force
must be exerted to cause the suspension cables to deflect (the deck of a suspen-
sion bridge is hung from the cables like draperies that are hung from a drapery
rod). Therefore, the first step in building the model is to replace the mass of
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the bridge by a single, concentrated mass at the center (Fig. B-6.29). We now
imagine the cables to act as gigantic rubber bands that stretch when a force is
applied to the bridge. This leads naturally to the idealization of Fig. B-6.30 as
the final step in the construction of our model.

MASS OF
BRIDGE

SUSPENSION CABLE

Fig. B-6.29. Preliminary model of bridge.

Fig. B-6.30. Final model of bridge.

This leaves the question of the computation of the natural frequency,
knowing only ti e sag of the spring due to the weight of the mass MAa Since

1 k we canM= W/g, and our original formula for resonant frequency is
27rsubstitute for m to obtain

f = 1--
o 27r W 27r

where W is the weight of the bridge and g is the gravitational constant that
converts mass to weight (g = 9.8 m/s2).

But what is Wilk? It is the deflection of the spring when a force W is
applied. Hence we can write our equation in still another form

1f =
0 27r

where d is the sag due to the weight of the mass in the mass spring system.
If g has a value of 9.8 m(s2, and if di is given in meters, fo will be in cycles

B-6. 25



www.manaraa.com

per second. Hence, we obtain:

fo =
2
1 1.96 cycles /second

The bridge design seems to be in trouble because of earthquake danger. Even a
mild earthquake at 2 cycles a second could excite the bridge to resonance and
cause serious damage.

What can be done? You may, of course, attempt to redesign the bridge
so that it is stiffer and has a much higher natural frequency; far above that
produced by a typical earthquake. Or you may try to achieve a natural frequency
far below the earthquake frequencies. There is a possibility that earthquakes in
this region are never severe or of long duration so that the natural damping in
the bridge will prevent any serious "build-up" of stresses. Perhaps more
damping can be provided in the design. At any rate, this preliminary calcula-
tion shows that your client's fears may be well grounded and that you should
examine your design carefully.

B-6.7 MULTIPLE RESONANCES
We have been using models with only one natural frequency or resonance.

Typical systems can oscillate at many "natural" frequencies. For example, an
automobile can oscillate vertically (up and down), or horizontally (to-and-fro),
or it can rock back and forth l'ke a teeter-totter in a pitching motion, to name a
few of its possible motions. Each of these natural oscillations results from the
interaction of different sets of masses and springs. Hence, they each involve a
vibration at a different natural frequency.

Each of these different types of oscillation ir called a "natural mode"
of oscillation of the system. The different modes can each be driven into
resonance independently. The resonant frequency in each case is the natural
frequency of that mode. If we were to drive an automobile over the sinusoidally
varying road that we used in our earlier illustration, and if we were to plot the
magnitude of the passenger's displacement, we would discover that the curve
may resemble that in Fig. B-6 .31. We may find two groups of resonant

w
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t
Z ert lw"W sum.
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ROAD FREQUENCY IN cis

Fig. B-6.31 Passenger displacement versus road
frequency for travel over a sinusoidal road.
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frequencies, one in the neighborhood of one cycle per second and others in the
neighborhood of 6 cycles per sec. The lower frequency corresponds to the
resonance discussed in Section B-6.4. The upper frequencies correspond to
those mentioned above

SHAPE OF STRING DURING VIBRATION

T ........,- \

STRING AT REST
ft...

...ow

L =110MIIIM

...law .....IM mmium.Is

...MN..

Fig. B-6.32. String vibrating in the fundamental mode.

In the case of the automobile, the resonances were quite heavily damped
and therefore were not sharp. In other systems, damping is intentionally light
and the resonant frequencies are prominent. Musical instruments provide
many examples of lightly damped systems. For instance, a taut string or wire
is a common element in musical instruments. If the string is under a tension
T; has a weight per unit of length W; and has a length between stationary points
L, then when it vibrates in the mode shown in Fig. B-6.32, its natural frequency
is

where
natural

higher.

_L t_j_l_fl 2L W

g is the acceleration of gravity (9.8 m/s 2). This is the mode of lowest
frequency.
When the string is vibrating as shown in Fig. B-6.33, the frequency is
In this case, the midpoint of the string remains stationary. Each

L...... _
"'"" ...... ,...... dm...

woo ,....
600.1""...No ammo. . ....... I..= -

Fig. B-6.33. String vibrating in the second mode.
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vibrating half-string in this case will have the same tension and, of course, its
weight per unit length is the same as in the mode of lowest frequency. But now
the vibrating length is half that of Fig. B-6.32. Therefore, to get the natural
frequency in this case, we simply replace L in the above equation by L/2. This
gives

2 r.:11_f
2 2L W "1

In general, it is apparent that when the string is oscillating in k sections, the
frequency will be

k
k 2L W 1

Thus, the string has an infinite number of natural frequencies corres-
ponding to an infinite number of modes. The lowest of the natural frequencies
is called the fundamental frequency. The higher frequencies are called over-
tones or harmonics.
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Fig. B-6.34. Amplitude-response curve for a string excited
at one end.
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Fig. B-6.34 shows the amplitude response-excitation curve for an un-
damped string being excited by sinusoidal up-and-down motion at one end. We
see that the resonances in this case occur at integral multiples of the funda-
mental frequencies arid are very sharp.

The bowing of a violin excites not only the fundamental mode in a violin
string, but many of the overtones as well. The excitation of overtones produces
a tone of richer quality than the excitation of the fundamental frequency alone.
These components are reinforced by resonances in the violin body. The ampli-
tudes and mixture of the various overtones varies with the violin and the bowing
of the player. Mainly for this reason, two violinists playing the same violin
produce different tone qualities. (There are, of course, other sources of
difference which result from the manner in which notes are started and
stopped),

The generation of sound is often a consequence of resonance. Air has
mass and is also compressible or flexible; that is, it has a stiffness, or
springiness. Mass and stiffness are the ingredients for a vibratory system.
Indeed, air in a fixed enclosure like a room or an auditorium will have certain
natural frequencies. In acoustical design the problem of multiple resonance is
of great importance.

B-6.8 UNDESIRABLE EFFECTS OF RESONANCE
We have already discussed several examples in which systems may be

driven into resonance to produce undesirable effects. The bumps or irregular-
ities of a road can drive the car into resonance in any one of many different
modes and thus produce an uncomfortable ride. Earthquakes may drive build-
ings or bridges at resonance so as to cause damage. It has been customary for
a long column of soldiers marching over a bridge to break step to avoid a
resonant collapse of the bridge. Soldiers march at about 120 steps per minute,
or about 2 steps per second. On a bridge with a natural frequency of 2 cycles a
second, especially a weak footbridge, a long column of soldiers marching in
step could excite the bridge into large oscillations. With today's heavy bridges,
built for automobile traffic, a catastrophe of this sort would seem problematical.

There are,however, no dearth of examples where resonance has caused
serious destruction in systems. Often these effects arise in subtle and unantici-
pated ways. One example is the break-up of ships due to resonances excited by
ocean waves. Figure B- 6.35a illustrates a ship riding the crest of a wave.
Many types of waves are cyclic or periodic and can therefore apply periodic
excitations to the ship. As is the case with the other structures already studied,
a ship has many possible modes of vibration and natural frequencies. It is not
difficult to picture one of the basic modes of oscillation in terms of a simple
model (Fig. B-6. 35(d) ). We first concentrate the entire mass of the ship into 2
equal masses, one at each end, and imagine the two ends to be joined by a flex-
ible rod. When the ship is on the crest of a wave, (Fig. B-6.35b), the end
masses cause the ship to drape itself over the wave, bowing the ship upward.
When the ship is in the trough of a wave, the end masses cause the ship to bow
in the opposite direction (Fig. B-6 .35c). This motion is called bending or flex-
ing.

As is clear from Fig.B- 6.35(d),if we consider only half of the ship, we
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(d)

Fig. B-6.35. Model of ship bending.

have the same situ tion as the skyscraper °I the previous section. Each half is
modeled by a mass at the end of a reed, (Fig. B-6.35d). The system has a
natural frequency in bending or flexing which can be excited to resonance if the
speed of the ship and the period of the waves have just the right magnitudes.
When the ship is executing such flexing motions that it will tend to break at the
middle. Indeed, during World War II, a number of ships with welded seams
collapsed at the middle in rough seas.

Another example is the "singing" of power transmission or telephone
lines. When the wind blows against a thin wire, little whirlpools, called eddies,

WIND aaaa
VELOCITY, 9 9 9 9EDDIESV

--CROSS SECTION OF
TRANSMISSION LINE

Fig. B-6.36. Excitation of "singing" transmission
line by eddies.
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are formed (Fig. B-6.36). The same phenomenon can be observed in flow of
rainwater around an object placed in the street after a rain storm or in the flow
of a river around a bridge abutment. The eddies form periodically and give
rise to a periodic excitation of the wire. The frequency of this excitation is
given by the following equation:

f =0.22 D

where v is the velocity of the wind, D is the diameter of the wire, and f is the
frequency of the eddy formation (the number of eddies formed per second.) The
number 0.22 is a constant, the so-called Strouhal number, independent of the
units as long as the length units for measuring v and D are the same. For
example, v may be in feet per second, and D in feet; or v may be in meters
per second, and D in meters.

It is common for the wind to excite wires, especially exposed bare
wires on long spans, to resonance because of this phenomenon. The usual
effect is to cause the line to "sing", sometimes with a very pleasant tone. For
example, suppose the wind velocity is 30 miles per hour (44 feet per second),
and the wire is 1 /8" in diameter. Since 1 /8" - 1/96 feet, our equation gives

44 feet/secondf = O. 22 = 845 cycles/second1/96 feet
This is a high note in the soprano range. If the wind is steady, wires have
vibrated with enough amplitude to break.

Several methods of protection against the destructive effects of this
kind of resonance have been proposed. It is interesting that one of the most
effective methods is also one of the simplest, and seems to have been invented
independently by several people in different countries at different times. The
key observation they have made is that when transmission lines are excited to
resonance by wind eddies, it is usually one of the very high frequency modes of
the line that is excited. As shown in the exaggerated sketch of Fig. B- .37, the
peak-to-peak distance of the vibration pattern that develops is typically in the
order of one foot. The solution requires the use of a helical piece of plastic
about one and one half feet in length, (Fig. B-6.38). When this is wound on the
line, the oscillations of the line decrease below the destructive level. The
piece of plastic seems to do two things: first, it provides damping; second, the
plastic helix seems to eliminate the resonant mode for an exciting frequency,
for which the helix length is somewhat greater than the distance between

w//i,w/././z//7/ff,fifrii/// ///,,iff,//fif,/

Fig. B-6.37. Mode shape of "singing" transmission line.
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HELICAL PLASTIC

TRANSMISSION WIRE

Fig. B-6.38,, Damper for "singing" transmission line.

vibratory peaks.
Although this explanation seems to be plausible, the exact mechanism

of the process has not been investigated in detail. In spite of only incomplete
understanding, the engineering problem seems to have been solved.

B-6.9 USES OF RESONANCE
When a young child finally masters thea.rt of pumping a swing, in a

playground, he has learned that system resonance can be exploited for benefit.
We have seen other examples of the exploitation of resonance in our discussion
of musical instruments. There are other cases of useful applications of the
resonance phenomenon. in building his world, man has used resonance as one
of the keystones. For example, the effect plays a vital role in radio and com-
munications systems of all kinds. To close this chapter, we will cite a few
examples of the uses of resonance in the highly technological world which
surrounds us.

One of the oldest and still one of the most useful applications of reso-
nance is in the mechanism of the clock or watch. It is perhaps easier to describe
this use of resonance in terms of a pendulum clock, although the principle is the
same in all practically clocks except the electric clock which depends upon
altexn.ating current. First, we note that the pendulum executing small oscilla-
tions is equivalent to a mass-spring system. The restoring force, which is
supplied by the spring in the mass-spring, is provided by gravity in the pendulum
clock. The resonant frequency of the pendulum depends only on the length of
the pendulum and the gravitational constant, g. In particular,

1f Jr=
2 Tro V L

Thus, the pendulum displays a very convenient property; namely, that
its natural frequency is easily regulated. One simply varies the position of the
bob along the rod. thus changing the value of L and thereby the period of the
swing. This suggests the use of the pendulum as a timing mechanism. If it
were excited at resonance, a small effort should make the pendulum oscillate
at a definite frequency, which is determined only by the position of the bob.

One complication enters immediately: how can we provide the excita-
tion? The excitation must be at the resonant frequency. To apply the excitation
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at the correct time one might conclude that another clock would be needed. This
is not a very comforting thought; it raises the question, "how was the first clock
built?" A means of overcoming this dilemna depends on the use of the clock it-
self as the mechanism for timing the excitation.

A sketch of a basic clock mechanism is shown in Fig. B -6. 39. For
clarity, only two teeth of the geared wheel are shown. In Fig. B-6. 39a, the
pendulum is shown in the vertical position. Imagine it to be given a small

Fig. B-6.39. Basic clock mechanism.

clockwise push. This will cause the fork to swing clockwise, releasing the
gear tooth. The weight will then pull the gear counterclockwise so that the
fork is struck by the next tooth (Fig. B-6.39b). The overall effect of this
impact is to give the pendulum a small tap and also to rotate the fork so that it
catches that same tooth when it reaches the position shown in Fig. B- 6. 39c.
The gear is thus prevented from further rotation. until the pendulum again reaches
the left-hand portion of its motion (Fig. B- 6. 39b). The net result is a series of
taps on the pendulum one at the end of each stroke as in Fig. B-6. 40. In a real

TAP APPLIED
HERE ON EACH
SWING OF
PENDULUM

Fig. 33-6.40. A pendulum motion analogous to
basic clock mechanism.
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clock mechanism teeth are spaced all around the geared wheel so that the cycle
of operation can be continued indefinitely as long as there is an activating force,
which is provided in this clock by the weight W.

In wrist watches a rotary mass-spring system is used to replace the
pendulum as the resonating system. A coiled spring and balance wheel is used
instead of the weight. In modern electronically-operated wrist watches which do
not require the winding of a spring, a similar system is used; ramely, the clock
actuates a mechanism that automatically applies a periodic driving force. This
idea has been used as the basis of timepieces from the invention of the pendulum
clock to the present day.

A look at the response-excitation curves for a lightly damped dynamical
system suggests another use of resonance--as a filter which is sensitive to sine
waves of a particular frequency. Suppose we have as input to a resonant system
a signal containing sinusoids of many frequencies. For example, in Fig. B-6.41,
we show three sinusoids of frequencies 1,2.2, and 4.6 cycles per second, and
with amplitudes of 1/2", 1", and 3/4". Suppose we ride on a road whose form is
equivalent to the sum of the three sinusoids. This sum is shown in Fig. B-6.42.

3/4S

3/4"

111

1/2"
1/2"

3"
2"

I"
2"

Fig. B-6.41. Sinusoidal components of input function.

Fig. B-6.42. Composite input signal that is the sum
of the three sinusoids Fig. B-6.41.
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What will happen depends on the natural frequency of the suspension system.
But if we use shock absorbers with very lignt damping to obtain a sharply reso-
nant system, we can expect the car with a natural frequency of 1 cycle /sec to
pick out the signal in the road of 1 cycle/second. That is, the higher frequencies
will excite the cat only slightly, and the car will respond as if only the sinusoid
frequency of 1 cycle/second were present. (Remember that in the mass-spring
system, the response to an excitation consisting of several components is the
sum of the responses to the components taken individually.) In fact, by measur-
ing the amplitude of the response at 1 cycle/second, we could use Fig. B-6.25 to
compute the amplitude of the one cycle/second component of the road shape.

Similarly, if the suspension springs or the mass of the car were
changed to give a resonant frequency of 2.2 or 4.6 cycles/second, the car could
be used to measure the amplitudes of these components of the road shape. Thus,
resonant dynamical systems can filter out or isolate signals of different fre-
quencies. If a signal containing many frequencies is used as the input to a reso-
nant system, we can obtain a signal which is almost completely that of the reso-
nant frequency as the output. Furthermore, the amplitude of the output is pro-
portional to the amplitude of the input signal that is filtered out.

No matter how sharply resonant the system, it will not filter out a
single frequency but rather a range of frequencies. Figure B-6.44 shows the
amplitude response curve for two sharply resonant systems with two values of

5.02

5.02ir 3.3,

3.3

1-2-1- 2

b/27rf0m = 0.2

BANDWIDTH
=0.3f0

b /2ir fom =0.3

BANDWIDTH
= 0.55 fo

SLIGHTLY
DAMPED

STRONGLY DAMPED

0.5 10 1.5 2.0 2.5 f /f0

Fig. B-6.44. Bandwidth of resonator acting as a filter.
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damping. The range of frequencies over which these systems are effective as
filters is somewhat arbitrarily defined as those frequencies lying between the
values at which the response amplitude is lArfof the maximum response
amplitude. The size of this range of frequencies is called the bandwidth of the
filter. It can be seen from Fig. B-6.44 that the bandwidth varies with damping;
the greater the damping, the greater the bandwidth; i.e., the less selective the
filter.

The use of the resonant frequency for filtering is very common. One
example is in frequency measuring instruments. Figure 13-6.46 shows a very
simple frequency gauge consisting of tip masses mounted on flexible reeds.

Fig. 73-6.45. Reed frequency gauge.
The flexibility and length of the reeds and the magnitude of the tip masses are
different so that each reed has a different natural frequency. When the base of
the gauge is placed on a vibrating piece of equipment, the reed with a natural
frequency close to that of the vibrating equipment is excited to large oscillations
and the frequency of the vibration is determined.

The most common use of resonance as a filtering device is in radio and
television. Every radio and television transmitting station emits a different
frequency sine wave, which "carries" the program. The frequencies of these
sine waves for A. M. broadcasting ranges from 550, 000 to 1, 600, 000 cycles /
second. Shortwave FM, and TV signals are also carried in this way. If the air
is filled with all of these signals, how can the particular signal of Channel 2 be
selected ? As you may guess, a resonant system is used to filter out Channel 2
from all of the other signals that are present. Of course, the resonant system
used, is electrical rather than a mechanical one such as we have examined
previously.
B- 6. 10 SUMMARY

In this chapter we examined the nature of the forces that must be
applied to accelerate or set into motion material objects. Material objects have
inertia; that is, the property of resisting change in motion. We also studied
dynamic systems in which not only inertia but stiffness or "springiness" are
present. We found that these systems have a natural tendency to oscillate when
they are disturbed from their equilibrium positions. Further, we learned that
there is a very simple formula for computing this natural frequency.

We also learned that the natural frequency was the resonant frequency- -
the frequency at which a dynamic system having both stiffness and inertia could
be driven into violent oscillations by excitations of the same frequency. Damping
however, could reduce the amplitude of a system driven at the resonant frequency.
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The concepts of stiffness, inertia, natural frequency, and resonant frequency,
and an appreciation of the role played by damping, were found to be of great
importance in the design of mechanical systems in which motion occurred.

Systems were shown that had not only one resonance but many
resonances, which, as in the case of musical instruments, could often be used
to good advantage. We found that there were also conditions under which
resonance could be destructive. One of the main tasks of structural engineers
is the elimination of such resonances, which at times have led to catastrophic
failures involving the loss of human lives as well as financial losses totalling
millions of dollars. We also found that this phenomenon could be exploited by
man for his benefit. Indeed, resonance in timepieces was one of the first
phenomena exploited in developing the highly complex society in which we live.
Finally, we noted that resonance is used in ele, trical and electronic systems
as well as in mechanical ones.
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APPENDIX A

In the body of Chapter B-6, the resonant frequency and the response - excita-
tion curve for the mass -spring system were presented without being derived. In this
appendix, we will derive these from the basic properties of mass and spring.

The derivation hinges upon a unique property of the sine wave when it is
integrated. If, for example, an electrical sine wave is applied to the integrator
section of an analog computer, the output of the integrator will also have the
shape of a sine wave. No other repetitive wave shape will remain unchanged in
form under this treatment.

Although the shape of the sine wave remains unchanged when it is
treated by an integrator, two important changes do occur. First, the output
wave is delayed one quarter of a cycle with respect to the input wave. Secondly,
the amplitude of the output wave is different from the amplitude of the input
wave by a factor which depends on the frequency of the input wave. This factor

1is equal to , where f is the frequency of the sine wave. Thus if the ampli-
tude

f
tude of the sine wave entering the integrator were 8 units, then the integration
will produce a wave which is delayed with respect to the incoming wave by one

1
quarter of a cycle and with an amplitude that is 8 x (-F7) units. In general, if
Ao represents the output amplitude and Ai represents the input amplitude, then

, ,A ns A1 27r
. xt--y

o

Since the output is simply a shifted sine wave, the process of integration
may be repeated many times with a delay of one uarter of a cycle and multi-
plication of the amplitude by 1 or (27rf = w) for each integration. Thus a
double integration would produce a sinecAWave which is out of step with the
original wave by one half a cycle and with an amplitude which is as great as
the amplitude of the original sine wave. The process of double integration of a
sine wave is of particular importance in the material which follows. A general
statement of the result of this operation of double integration is:

1Ao = - 2
A.

1

Here the negative sign is used to indicate the shift of one half cycle in the output
wave, a condition which is equivalent to an inversion of the original wave.

This effect can be easily obs'erved with an arrangement of equipment as
shown in Fig. B-6.46,

A cathode ray oscillograph connected to the output of the signal generator
displays a sine wave of frequency f. This sine wave is fed into the input of the
first integrator. The output is attached to the CRO and is displayed as the
dotted sine curve B. For comparison the original sine curve is shown as a
solid line on the same display. The amplitude of the curve in a single
integration has become x A. .

27r f
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GENERATOR

(a)

Fig. B -6.46

I

2T f

Display C shows the result of a second integration. Here again the
dotted line represents the a -,tual display and the solid line represents the
original sine wave. The amplitude has now become 1 = 1 times the

COL (27rf)2
original amplitude and the wave is now the inverse of the original wave. For
this reason the output wave is indicated as the negative of the original, or

1
Ao

= - A.
(27rf)2

This result will be a key point in the derivation which follows:
Let us first derive the equation for the resonant or natural frequency

of the spring and mass. The basic property of a spring is that the force it
exerts is proportional to the compression from its original length. If this
compression is represented by d , then, Fs = -kd. The basic property of a
mass is expressed in Newton's Law:

F = rri am
In the mass spring system, the force of the spring is the force which is
responsible for the acceleration of the mass, so that

F =F or - kd = ma
s m

In Chapter 13-2 (Section B-205) we learned that acceleration can be
converted into a displacement by a double integration; the first integration of the
acceleration gives us the speed change during the given time interval, and the
integration of the speed change gives us the change in the displacement of the
moving vehicle during the given time interval. This relationship between
acceleration during any time interval and displacement during the same time
interval is quite general and can be applied to the vertical motion of the mass-
spring model of the car body.
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When the car body (mass-spring) is in free vertical vibration at its
natural frequency, its motion is sinusoidal. We have just seen that when a sine
wave is integrated twice it remains a sine wave but with a delay and a change in
amplitude. For a sinusoidal motion, as displayed by the mass-spring system,
the displacement, x, and the acceleration, a, have been shown to be related by
the equation:

X = 1

2(2Trf0)

where fo is the resonant frequency. We can substitute this value for x in the
previous equation;

a

ma = - kx =

The a's cancel and we can then solve for fo:

f =-1 F
o 27r

(27rfo)2
a

This equation is the one quoted in the body of this chapter.
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APPENDIX B

We can also derive the formula for plotting the shape of the response
vs. excitation curve for the mass spring system. (Fig. B- 6.20). In this
derivation we are not concerned with the free sinusoidal motion of the spring
mass, but rather in its motion in response to a sinusoidal input of a frequency
which may differ considerably from the resonant frequency of the system. What
we are concerned w;th is the effect of different driving fequencies on a system
with a fixed mass and spring constant, which of :necessity has a definite reso-
nant or natural frequency.

Let us recall that for any sinusoidal wave the relationship between the
amplitude of the displacement and the amplitude of the acceleration is:

2
1

Y = (2,-7-rf-) a

where y is the maximum displacement of the car body and a is the maximum
acceleration at the same instant.

We have also observed that the acceleration of a mass is related to the
force acting on the mass in accordance with Newton's Law

F = ma
Two equations are thus available in each of which the acceleration

?tau appears. While Newton's Law holds for any instant, the first equation is a
statement of amplitude relationship and the term amplitude indicates the
maximum value achieved during a sinusoidal motion.

Thus the acceleration in the first equation represents the maximum
acceleration of the car body. Since we wish to combine this equation with
Newton's Law, we must make certain that the fokce factor F represents the
maximum force acting on the car body, for only under this condition will the
factor "a" represent the maximum value of acceleration.

What is the maximum value of the acting force? Obviously, it arises
when the spring has developed a maximum compression or tension and is equal
to the spring constant k multiplied by this maximum compression or tension.
Since we represent the maximum displacement of the car body by y and the
maximum change in the road level by yr , the difference between these too maxi-
mum values must represent the change in the length of the spring. We thus can
indicate the maximum value of the force in Newton's equation as -k(y-yr), and
we can rewrite the equation:

-k(y-yr) = mamax where amax now represents the

maximum acceleration of the car body and m represents the mass of the car
body.

Therefore, amax - m (Y-Yr)
and amax - (2irf)2 y
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Combining the above, - -r-n (y-yr) = -(27rf)2y

We have shown in Appendix A that = (27rfo)2 where

fo is the resonant frequency of the spring-
mas s system

therefore (21Tfo)2 (Y-Yr) = (27rnir

2(27Tfo)y2-(27rf)y = (27rfo )2yr
2 2 2

(fo f yr f o

f2 1
=

2 2 2yr fo f -)
This is the equation which describes Fig. B-6.21. At driving

frequencies f which are considerably smaller than the natural frequency fo of
the spring mass system, the ratio ( f ) in the above equation becomes small

f.o

enough to have little effect on the denominator. The ratio of -X- is then very
nearly 1. Yr

When the system is driven at f = fo, the denominator becomes zero and
the ratio - Y- then becomes infinitely great. Finally, when the driving frequency

Yr
f becomes increasingly larger than the resonant frequency fo of the system, the
ratio Y-- becomes increasingly smaller, so that for very rapid road variations

Yr
the displacement amplitude of the car body becomes negligible .
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B -6. 1

B -6. 2.

B-6.3.

B-6.4.

PROBLEMS

A rocket which has a mass of 5,000 kg is launched with a force
of 190,000 newtons. What is its initial acceleration when the
resisting forces are negligible? How many multiples of the
acceleration of gravity is this?

A man is pushing a box across the floor with a force of 200 newtons.
The box weighs 98 newtons and is accelerating at the rate of 18 m/ s2.
What is the force of friction opposing the motion of the box?

A rocket sled is accelerating at the rate of 90 m/ s2. It is acted
upon by a jet that exerts a force of 10,000 newtons and a retarding
force of friction of 100 newtons. What is the mass of the sled?

You find that you can pull on a rope that is tied to a building with a
force of 800 newtons. Suppose you engage in a tug of war with an
equally strong opponent. What will be the force in the rope?

B -6. 5. A spaceman out in space beyond the measurable pull of any planets
does a space walk by using a gun that emits a gas jet.

a. If his mass is 70 kg and he applies a 7000-newton force, at
what rate will he accelerate?

b. How many multiples of the gravitational acceleration on the
earth will this be?

A large mass (history book, cement block, etc. ) is hung on a
length of wire from the ceiling of a room. Various people push
against the mass over a period of one minute with pulses of varying
frequencies but equal force. The maximum displacement of the
mass is recorded for each frequency.
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B-6. 7.

Frequency of pulses
(Pulse/second)

0. 2

0.5
0. 8

Displacement
(inches)

0. 5

1

8

1 4

1. 2 6

1. 5 18

1. 7 6

2 2

2.2 1.5

a. Graph the input-output characteristic of this pendulum.

b. What is the resonant frequency of this pendulum?

c. If this pendulum were allowed to swing freely, at what
frequency would it swing?

If the mass of a car is ?000 kg and its suspension system has an
effective spring constant of 72,000 N/m, find the amplitude of the
road if the road frequency is 2, 4, 8, and 10 rad/s and the amplitude
of the car is 0.01 meter.

B-6. 8. Suppose the car is going twice as fast as in Problem B -6. 7. Find
the road amplitude.

B -6. 9. If the road amplitude is 0.0089 meters and the car's amplitude is
0. 01 meters, find

a. the ratio of k/M if the road frequency is 2 rad/ s. and

b. If M is 3000 kg, what is the spring constant k?

B-6.10. If the natural frequency of the car is 2 c/s and the ratio of car
amplitude to road amplitude is 2.0, what is the road frequency as
seen from the car?

B-6.11. If the ratio of car to road amplitude is 3.0 and the road frequency
is 2 c/s, what is the car's natural frequency?

B-6.12. Suppose a car is traveling over a road at 30 miles per hour (44 ft/s)
and the peak to peak distance between bumps is 22 feet. If the
natural frequency of the car is 1.0 c/s, what is the ratio of the car's
amplitude to the road's amplitude?
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B-6.13. You are traveling in a car at 60 mi/h (88 ft/ s). The ratio of the
car's amplitude to the road amplitude is 3 to 2. How far apart are
the bumps of the road spaced if the car's frequency if 1 c/s?

B-6.14. A seismograph is an instrument for measuring the deflection of the
earth during earthquakes. It consists basically of a heavy mass
suspended from a spring. The spring is suspended from a rigid
mount which rests on the earth. The mass-spring system is of
very low frequency, of the order of 1/10 c/s, which is well below
the frequencies of earthquakes. On the basis of Fig. B-6.20,
explain how the seismograph works.

B-e.15. Do Problem B- .11 on the assumption that the damping quantity
has the value b/2 it fo m = 0. 4. (Use Fig. B -6. 24)

B-6.16. Do Problem B-6.12 on the assumption that the damping quantity
13/2n fo m = 1.0.

B-6.17. Do Problem B-6.13 on the assumption that the damping quantity
b/2rr fo m =1. 0.

B-6.38. If an automobile has a mass of 1500 kg and a spring constant of
96, 000 newtons/meter, what is its natural frequency in cycles
per second?

B-6.19. You observe that the natural frequency is up-and-down motion of a
car is 1 c/s, you also know that the car has a mass of 1000 kg.
What is the spring constant k?

B-6. 20. If the natural frequency of a car is 1 c/s and the spring constant is
78,800 newtons/ meter, what is the mass of the car?

B-6.21. You find that the A siring on your ukelele is about one half-tone
flat, so that it is vibrating at about 830 c/s instead of 860 c/s.
When you tune the string up to pitch, by what per cent do you
increase the tension on the string?

B-6.22. A string which has a natural frequency of 128 c/s is made to vibrate
in three parts. What is the frequency of the sound produced?

B-6.23. Two strings of the same length and having the same weight are set
into vibration. If the natural frequencies have a ratio of 2 : 1, what
is the ratio of the tensions on the strings?

B-6. 24. At what frequency would a smoke stack 5 feet in diameter vibrate in
winds of 15 mi/h, 20 mi/h, 30 mi/h, 45 mi/h, and 60 mi/h?

B-6.25. The frequency of a pendulum with a mass of 10 kg is 2 cycles per
second. What will the frequency be if the mass is replaced by one
of 5 kg?

B -6.45



www.manaraa.com

B-6.26. What is the frequency of a pendulum 4 feet long?

B -6. 27. The following data are given for the amount of sway of a radio tower
when a wind of 10-second pulses hits the tower.

North wind speed - mi/h Amount of swa' - inches
5 1

10 1.5

15 3

20 9

25 20

30 12

35 10

40 9

a. Draw a graph of the input-output characteristics for this
building.

b. What is the resonant wind speed?
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Chapter C-1

FEEDBACK

C-1. 1 INTRODUCTION

Have you ever thought about how many of your actions are directed
toward achieving some goal or purpose? If you have, you quickly realize that
almost everything you do is goal-directed, in some Sense. These goals may
be very simple and immediate as, for example, when you insert a dime into
a soft-drink dispenser because you wish to quench your thirst, or they may be
very complex and of long-term significance, as when you decide to go to college
to prepare yourself for a profession, such as teaching, law, engineering or
medicine.

This purposeful activity of "seeking goals" is of course not unique to
men alone, but may be found in all living things. Plants turn their leaves toward
the sun and extend their roots toward moist and fertile soil. Salmon battle
their way up rivers and on through rapids to spawn their eggs in the same creek
in which they themselves were hatched. Even the single-celled amoeba moves
away from a disagreeable substance to seek a more pleasant environment. If
you accidentally cut your finger, the blood forms a clot to stop the bleeding. If
excessive blood is lost, various reactions within the body begin automatically,
the blood vessels contract to bring blood pressure back to normal, the spleen,
which functions as a blood reservoir also contracts thus compensating in part
for the loss of blood, you become thirsty and drink large amounts of water to
help to make up for the loss of blood plasma. Thus, the various organs of the
human body exhibit their own wisdom and seek their own goals.

In contrast with such purposeful activity as is exhibited by living things,
inanimate objects appear to behave quite differently. Their behaviour is based
solely on prior causes. Usually we do not think of inanimate physical objects
as being influenced by any awareness of what may happen to them in the future.
The principle of physical causality asserts that only past events can affect the
present. This is one of the basic assumptions of all physical science. If you
postpone a date tonight because you wish to study for an examination that will
be given tomorrow, is this not a case of a future event affecting the present?
Does this therefore mean that you (and other living things) are not subject to
the principle of physical causality?

Inanimate objects appear to differ from living things in another important
aspect, too. With living things we recognize movement towards goals, towards
maturity and death, toward satisfaction and reward, towards equilibrium,
towards a conscious purpose. But we do not ordinarily think of inanimate ob-
jects as seeking "goals" or behaving in "purposeful" ways. For instance, a
rock loosened by the morning's rain falls down the mountainside. We should
think it a bit odd if someone suggested that the goal of the rock is to seek a
lower elevation. And, if the rock should strike and kill a snake, only an
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irrational and superstitious person would assert that this was the rock's pur-
pose. Yet, if you were to throw a rock at the snake and kill it, we would all
agree that to be your purpose. Why does it make sense to speak of goals and
purposes in describing the activities of living things, whereas it is nonsense
to speak in the same way of inanimate physical objects such as the falling rock?

Perhaps you may conclude, as many other people have done, that goal-
seeking behavior is only the unique characteristic of life. But is this always so? An
elevator operator has the goal of bringing the elevator to rest at each floor so
that the floor of the elevator cab is level with the floor of the building. In many
older elevators, the speed of the elevator is controlled directly by the operator
(with some success). At the end of the day when the elevator is heavily loaded
with people on their way home, the operator must begin to bring the elevator
to a stop before it reaches the desired level if he is not to overshoot his mark.
And if he does overshoot, he will reverse the motion to raise the elevator until
its floor is at approximately the same level as the outside floor. With practice,
a skilled operator can learn to adjust his actions in accord with the number of
passengers and to stop the elevator at the desired level without a number of
adjustments. Modern elevators now have automatic mechanisms for accomplish-
ing the same goal much more effectively. The mechanism built into the auto-
matic elevator remembers at which floors it should stop to pick up passengers
and to discharge passengers. It can also stop at the proper level more consistent-
ly than it could under the control of a human operator. The automatic elevator thus,
can be said to exhibit a goal-seeking behavior, despite the fact that it is completely
inanimate. What then is the essential difference between the elevator and the
falling rock that permits us to describe one, but not the other, as a goal-seeking
device? The goal seeking behaviour of the elevator is made possible by the
presence of a feedback arrangement in the elevator system.

The distinction between mechanistic behavior (which is governed only by
past causes) and purposeful behavior (which is guided by future or desired goals)
has been a battleground of debate among philosophers, theologians, psychologists
and many others. Yet it is only within the past thirty years that man has dis-
covered the concepts needed to illuminate and understand some of the issues in-
volved. The most important of these concepts lie at the heart of this course. They
are the concepts and principles that enable man to design and build machines that
have the ability to perform specified tasks while adapting themselves to changing
conditions, in much the same way as people adjust their behavior. These are
the concepts associated with computers, information storage, optimization and
dynamic models. Of them all, the most central and pervasive concept is that of
feedback, which permits us to build machines and systems which display goal-
seeking characteristics.

C-1. 2 SYSTEMS WITH INPUT AND OUTPUT

In this chapter, we wish to develop an introductory familiarity with the
concept of feedback -- an understanding of when feedback exists in a man-made
system, of what can be achieved with the use of feedback, and of the characteristic
behaviour that we can expect from a system which contains feedback. But before
these statements can be meaningful, we need a definition of the term feedback.

C-1. 2
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Many man-made systems have a main input and a primary output signal
(Fig. 1, where we call these signals u and y respectively). For example, in
driving a car along a straight horizontal road, the system determining the speed
of the car has the two signals.

INPUT SIGNAL
SYSTEM

OUTPUT SIGNAL -
y

Fig. 1 Basic System

u (input signal) -- the amount the accelerator is depressed by the driver.

y (output) -- the speed of the car.
The larger the input, the more the car speeds up and the lavger the value of speed
y.

A better picture of the system is shown in Fig. 2. We know that in actuality
the driver senses the speed y of the car. As that speed changes, the driver ad-
justs the accelerator position u in order to slow down or speed up the car. In
other words, the driver determines u according to his estimate of y; this re-,
lationship is indicated by the block labelled Driver in Fig. 2 -- a block with the
input signal y and the output u.

ACCELERATOR

CAR
SPEED

POSITION u 1116

DRIVER

y

y

Fig. 2 Speed-control system for automobile.

Thus, Fig. 2 is a model or picture of the relative roles of the automobile
and the driver in this speed control system. The automobile determines how
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y depends on u; the driver establishes the relation for u as a result of y
(and what he would like the speed y to be).

If we compare Figs. 1 and 2, there is obviously one major difference.
In Fig. 1, we have a very simple cause-and-effect relationship depicted: u
causes a certain effect y (the actual quantitative value of y for a given u
depends on the characteristics of the system). With a small car, for example,
the movement of the accelerator through a distance of one inch will not produce
the same effect as the one inch movement of the accelerator of a large car. In
Fig. 2, the cause-and-effect relationship is more complex. Now u not only
causes a certain y but thiF y, in turn, results in a modification of u ; which
produces a further change in u that varies y again, and so on.

Figure 2 is called a feedback system because of this characteristic: the
driving input u not only determines x, but also depends on x.

Why are we particularly interested in feedback systems? What special
characteristics are associated with the feedback property? In the remaining
sections of this chapter, we shall ati:empt to develop answers to these questions.
Thus, our basic objective in this chapter is to answer these questions:

(1) When does a system possess feedback?
(2) What particular characteristics are associated with the

presence of feedback?
(3) When is it useful to include feedback in the design of a system?
(4) What undesirable properties may appear when feedback is

used or exists?

In order to develop the answers to these questions, we will first consider
in greater detail what feedback is as well as examine additional examples of feed-
back; we will find that an awesome range of Systems involve feedback, and that
feedback frequently permits systems to operate with enormously improved
accuracy. Finally, in order to emphasize quantitatively these attributes of
feedback, we will do a few simple, algebraic computations and experiments. The
primary goal of the chapter, however, is to develop the ability to recognize feed-
back in systems as well as an awareness of the more important characteristics
that result from its use.

We will first describe various, familiar examples of feedback in order
to begin our development of an understanding of this important engineering con-
cept. In particular, we are interested in situations in which feedback exists
more or less incidentally. The next section, will consider design problems in
which we use feedback intentionally to achieve certain desirable system charac-
teristics. Thus the discussion in this section is rather descriptive and non-math-
ematical: our only objective is to familiarize the reader with the method of
thinking in terms of feedback.

One characteristic of many real-life systems must be emphasized at
the beginning: the idea that a system is commonly described in terms of a
cause-effect relationship (in scientific terms, an input-output relationship).

C -1. 4



www.manaraa.com

INPUT

( CAUSE )

SYSTEM OR
SERVICE

OUTPUT

( EFFECT )
Vow

11

Fig. 3. Basic system.

As shown in Fig. 3, the system is driven or excited by a signal which is called
the Input; the corresponding response of the system is termed the Output. The
system determines the relationship between the Output and the Input -- i. e. , what
specific output results from a known input signal.

A picture such as Fig. 3 is the starting point for a scientific approach
to understanding a system or a device. For example, if the system we try to
understand is the steering mechanism of a car, the two signals are

Input = angular position of the steering wheel
Output = heading or direction in which the car is moving

The system in this case may include the power steering device, the tires, the
car, and the nature of the road surface (e.g., as the road becomes icy, the
car responds very differently to a turn of the steering wheel).

Car steering is a relatively simple system, since it has only one primary
input signal and one output signal. There are familiar systems with a large
number of inputs and outputs -- indeed, there may be so many that we find it
essentially impossible to understand what is going on inside of the system. As
an extreme example of such a complex system, we can consider the transporta-
tion system on the island of Manhattan in New York City. Transportation refers
to movement of both people and materials; city planning demands the design of
a total transportation system (including streets and traffic control for cars,
buses and trucks, pedestrian facilities, subway passageways, :ailroad facilities,
and airplane and ship terminals). This total system must service the needs of
the inhabitants and visitors as well as of industry and of government.

Just a partial listing of the various inputs to such a system emphasizes
the complexity. Here an input is any signal which determines the various
outputs because of the nature of the system. A few inputs are:

(1) The desired motion of people living in the city as they travel
to work, shopping, etc.

(2) The desired motion of people visiting the city, both commuters
and occasional visitors.
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(3) The generation around the city of garbage and rubbish which
must be hauled away (in the U.S. today mil are generating
more than four pounds of rubbish per day per person).

(4) The activities of the building industry in new construction
.1 and rehabilitation (each new building requires the transportation

of extensive equipment and materials to the site).
(5) The geographical distribution and frequency of both crime and

fire, with the resulting need to move police and fire equip-
ment rapidly.

(6) Public and private health activities, demanding movement of
ambulances and doctors, transporting of blood and medical
supplies, etc.

(7) Food needs of the inhabitants and visitors.
(8) The weather (e.g., in a typical city in rainy weather, down-

town streets are clogged during late afternoon by wives
cruising around the block while waiting to pick up their hus-
bands).

In this example, the list of inputs which affect the system can clearly be extended
well beyond these few items. The intelligent design of the transportation system
requires consideration of all of these factors; otherwise, we may (for example)
develop a system which is satisfactory for moving people, but fails to permit
rapid motion of emergency vehicles.

Thus, we are dealing here with a multi-input, multi-output system --
indeed a system which is further complicated by the fact that the system must
meet certain economic, social, and political constraints. For example, in
economic terms the tranf.nortation facilities are limited by cost, both in capital
expenditures and in the fare charged users, Socially, new transportation means
are limited to those acceptable to the public: while it might be desirable tech-
nically to construct a subway train with a maximum acceleration of twice the
acceleration of gravity (twice free fall), txo one would in such a vehichle a
second time. As a final example of a constraint, the transportation system
planner can not easily locate railroad tyacks arbitrarily through densely popu-
lated areas or through newly constructed apartment houses.

In this course, we shall not be interested in detailed study of anything as
complicated as a metropolitan transportation system. Rather, our interest is
restricted to relatively simple systems, usually with a very small number of
inputs and outputs (generally only one input and one output). Regardless of the
complexity of the problem, however, the system is the factor which establishes
the relationship between the input signals and the various outputs.

Figure 4 illustrates a final example of this cause-effect relationship. The
input is the position of the accelerator, the output the speed of the car. The out-
put for a given input is determined by the characteristics of the system: by the
amount of gas fed to the engine as the accelerator pedal is depressed, the effi-
ciency of the motor in converting this gas energy to forward thrust, the surface
of the road, the incline of the road, and so forth.
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ACCELERATOR

POSITION

SYSTEM
CAR AND ROAD

CAR

Fig. 4 Another example.

C-1. 3 THE PHENOMENON OF FEEDBACK

SPEED

Once we recognize that most cause-effect relationships in the real world
can be represented by an input-output diagram such as we drew in the preceding
section, the phenomenon of feedback is obvious. Feedback occurs when the
input is determined, at least in part, by the output. In other words, if we have
two systems (A and B in Fig. 5), each with its own input and output, and if we

INPUT A SYSTEM A

OUTPUT B 1SYSTEM B

OUTPUT A

INPUT B

Fig. 5 The building blocks of a feedback system.

interconnect these two systems as shown in Fig. 6, the input of B is the output
of A, and the input of A is the output of B, then the result of such an inter -
connection is a feedback system or a system with feedback. A signal entering
at the input of A travels through A, then through B, then again through A,
and so forth. The term feedback arises because the output of A is fed back
through B to the input of A.
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INPUT OF A
SYSTEM A

OUTPUT OF A

SYSTEM B

Fig. 6 A simple feedback system.

Figure 6 is not a particularly interesting system, since there is no way
to start the system moving or acting. Figure 7 shows a model of a much more

PRIMARY
SYSTEM Ai--

SYSTEM B

OUTPUT OF A

OUTPUT OF
B -

Fig. 7 Feedback system with one input frorh external world.

common arrangement; here we have added a primary input -- a path through
which our system is connected to the outside world. As a result of this primary
input, the system can be driven or excited, so that there is a response. Thus,
Fig. 7 is a feedback system which we can expect to find in real-life situations.

Feedback, as depicted above, exists in many familiar situations. As a
first example, we consider communications between two friends. In this case,
the output signals are the spoken words of the two individuals. Person A
receives information from the outside world (e.g., by visual observation) which
he interprets as a misdeed of person B. A then makes certain remarks
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(output A) to B which alienate her; she in turn makes a few sarcastic remarks
to A; he replies in kind; and our feedback system quickly moves into a con-
dition of instability. The two system outputs grow rapidly in intensity or bitter-
ness.

The example illustrates an important characteristic of many feedback
systems: a very small primary input signal (indeed a signal which may seem
negligible) results in the build-up of signals within the system to extremely
large values. This phenomenon (a form of instability which we shall study in
greater detail in a later chapter) results directly from the closed-loop nature
of the feedback system: the fact that signals can travel around and around the
loop in Fig. 7. If we start with a very small signal of magnitude 10 -6, entering
as the primary input and it is multiplied by 10 as it traverses Systems A and
B in one second, it will be 10-5 in magnitude when it again reaches the input of
A. Each triparound the loop results in a signal magnification by 10; after only
12 traversals (12 seconds), our original signal of 10-6 has grown to 106.

This tendency toward instability in feedback systems can also be illustrated
by other examples:

(a) The relation between sleep and health is sometimes an illustration
of a feedback system. When one becomes ill with a sore throat or nasal con-
gestion, sleep is difficult; the lad-. of sleep or rest tends to permit the cold to
become worse, which in turn makes sleep even more difficult.

(b) Economic system frequently exhibit feedback phenomena. When a
union as large as the auto workers obtains a sizeable wage increase, costs of
automobiles tend to rise. Other costs rise as the added income of the union
members results in more spending nationally in other industries, hence greater
demand for goods. The resulting increase in prices induces the union to ask for
further wage increases. A single union, of course, does not control this infla-
tionary spiral, and the system tendency to oscillate can be controlled by changes
in government spending, taxation, and so forth. This is a system as complex
as the metropolitan transportation example of the last section.

(c) The U.S.A. -U. S. S. R. armament race illustrates the same phenomenon
of feedback. Here the USA learns of the development of tlw USSR inter-continental
ballistic missiles, and launches a major program to develop more missiles than
the Soviets possess. Learning of the USA missile arsenal, the USSR then under-
takes development of a major anti-missile system. In order to maintain the
"balance of power, " the USA must then launch a major program for an effective
anti-missile system. Each of these successive steps represents both a gigantic
economic drain on each country and a major utilization of the technological
resources of the two nations.

C-1.4 INTENTIONAL FEEDBACK

The examples of feedback in the last section were all cases in which
feedback exists inherently in the system. In the boy-girl communication
problem, feedback is inevitable since the boy's remarks influence what the girl
says, hence what he hears as input. If feedback only occurred in such personal
or social situations, and instability was the only consequence of feedback, there
would be little point to our discussion of the phenomenon in detail here.

C-1.9
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Fortunately, the concept of feedback is considerably more profound.
We use feedback in a system intentionally in order to achieve remarkable
improvements in system performance. One of the most useful of these accom-
plishments of feedback is the reduction of the influence of disturbances or
unwanted signals. In this section, we first consider an example qualitatively,
we then consider what additional advantages a mathematical analysis can offer
in such cases.

A system normally has one or more input signals and one or more
responses. The system is designed so that the input signal yields the desired
output. Very often, there are also other, secondary inputs which we can not
control and which may not even be predictable. As a Navy pilot attempts to land
his plane on a carrier flight deck, for example, the primary input signal is his
location relative to the deck; on the basis of observation of this signal, he
adjusts his controls. There are also two secondary or disturbance signals; the
wind gusts acting on his plane and the forces the sea exerts on the carrier. If
these disturbances are too strong or violent, successful landing becomes a most
difficult task.

The carrier landing problem is particularly complicated because it in-
volves all three dimensions in space. Figure 8 shows a similar, two-dimensional

REEF

CURRENT

SH ORE L I NE

Fig. 8.

--=0.00"..
CHANNEL

n. M. REEF

10 n. m.1
I

Ship starting position
X ( 10 n. m. south of channel center)

4111101110

Navigating through a channel

problem. A ship is located 10 nautical miles (n.m. ) south of a channel opening
through a reef. The navigator sites the buoys or light signals marking the
channel and naturally sets a heading due north. A heavy fog suddenly sets in,
which tends to hide the buoys from the men on the ship.
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The ship steams on at 10 knots (nautical miles/hour) with a north head-
ing. The navigator, having estimated correctly the distance to the channel as
10 n.m., assumes that the ship will pass the reef in one hour -- as indeed it
will if there is no disturbance signal affecting the position of the ship.

But what happens if a current of 2 knots pushes the ship eastward? The
northerly motion is unaffected, but in one hour the ship is 10 n. m. north and
2 n. rn. east of its original position: i. e., 1.5 n. m. east of the edge of the reef,
and tragedy ensues.

In order to understand the system, a block diagram is useful (Fig. 9)

HEADING

ORDERED

CURRENT

ACTUAL HEADING
SHIP'S POSITION OF SHIP

ADDER CHARACTER
TAKEN BY SHIP 41.. -ISTICS RELATIVE TO CENTER

OF CHANNEL

Fig. 9 Block diagram for navigation problem.

The input signal is the heading the navigator orders for the ship. A disturbance
signal (the current) adds vectorially to this heading to yield a signal which is
the actual heading assumed by the ship. This actual heading determines the
system output: the position of the ship relative to the center of the channel.
The system operates satisfactorily if, when the north-south component of the
output is zero, the east-west component is less than 0.5 nautical miles.

The tragic ending of our story can be a-
verted if we can use a little feedback to counteract
the effect of the current. For example, perhaps
after 15 minute intervals the fog lifts long enough
for the navigator to complete another sighting on
the channel markers. After 15 minutes, the ship
is at A (7. 5 n. m. south and 0.5 n. m. east of the
channel center in Fig. 10). The navigator now
orders a heading toward the channel center.Fifteen
minutes later the ship is at B where another
sighting is taken and a new heading adopted (we
still assume the navigator is obstinate and refuses
to recognize that his past errors might be the re-
sult of a constant current, for which he could com-
pensate by aiming to the west of the channel center).
If this calculation is continued, we find that the
ship transverses the path shown in the figure, with
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Fig. 10 Path followed by ship
with feedback every 15 minutes.
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sightings taken at locations A, B, C, and D.

The block diagram of the system with feedback is shown in Fig. 11.
Every 15 minutes, the switch closes and the heading is readjusted according to

DESIRED

LOCATION
COMPARISON

HEADING

CURRENT
ACTUAL
HEADING

ORDERED
ADDER

OF SHIP

ACTUAL LOCATION

SHIPS
CHARACTER
ISTICS

LOCATION OF
SHIP (RELATIAL

TO CHANNEL
CENTER

SWITCH BRIEFLY CLOSES
EVERY IS MINUTES

Fig. 11 Block diagram of system with intermittent feedback

the difference between where the navigator would like to be and where he actually
is located.

In the above example, feedback occurs. every 15 minutes. If it is possible
to use feedback continuously (i. e., no fog exists, so the navigator can sight the

REEF REEF

I

I
I

I

I
I

START

Fig. 12 Path of
ship with continuous
feedback (but navi-

/ tga or not estimating
the current) --
essentially the same
as Fig. 10 although
this is a smooth
curve.

The path followed in Fig. 10 is most easily determined graphically if the
diagram is drawn to scale. For example, once B is known, C can be found as
follows. From B along a line toward channel center we mark off a distance of
2.5 n. m. to determine a point which we can call C'. This is the point the ship
would reach 15 minutes after leaving B if there were no current. C is 0.5 n. m.
due east of C'. Once C is known, D can be found similarly, etc.
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channel markings and readjust ship heading continuously), the path followed by
the ship is shown in Fig. 12. Initially the ship moves off the desired course be-
cause of the current, but the continual corrections result in final passage through
the channel without difficulty. In this case, the feedback is ever-present, and
the system is continuously compensating for the effect of the disturbing signal
(the current).

This navigation example illustrates in rather general terms a most
important use of feedback: Feedback can be used to reduce the effects of dis-
turbance signals. Many other examples of the property of feedback can be cited.
For example, in steering a car, the driver wishes to remain in his lane. On a
straight road, he sets the steering wheel so the car moves along the lane. Bumps
in the road, wind gusts, and unequal road surfaces under the tires are all dis-
turbing signals which may cause the car to veer to the right or to the left. In
order to compensate for these unpredictable signals, the driver uses feedback:
he observes the position of the car in the lane and then turns the steering wheel
to improve the position (Fig. 13). Feedback exists because the driver compares

DESIRED

POSITION
DRIVE R

FORCE APPLIED

TO STEERING
WHEEL

DISTURBING SIGNALS

STEERING
SYSTEM a
CAR

ACTUAL POSITION
OF CAR

Fig. 13 Block diagram of steering system

the actual position (the system output) with the desired position (normally the
center of the lane). The feedback is removed if the driver keeps his eyes closed
or at least away from the road.

INPUT GAIN
A Ax

DISTURBANCE

ADDER
U + Ax

GAIN
8

OUTPUT

Fig. 14 System with disturbance input and no feedback
C-1. 13
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The effect of feedback or disturbance signals can be shown quantitatively
if we consider first the system shown in Fig. 14. This system possesses no.
feedback. The input signal (which we call x) is amplified by the first part of
the system to yield a signal Ax in size. We next add to this the disturbance
signal u. This total signal, u + Ax, is further amplified to yield the output.

y = B (u + Ax) = Bu + ABx (1)

The output has two parts: the desired part, ABx, and the disturbance effect,
Bu.

Now what can we do with the system if we add feedback? To insert
feedback, we measure the output and compare it with what we would like the
output to be. That is, if our system had no disturbance, the output y would
be ABx; hence let us measure y and then take I/AB of this value. Ideally,
this y/AB should equal x tut because the disturbance produces the factor Bu
it will not. Hence the error (x - Y--) will be used to change the output toward

ABits desired value.

SU BTRACTOR

OR
COMPARATOR

Y

AB

VERYVERY HIGH
GAIN

AB wX-1-61
ADDER

AB

Y.. )
AB

Fig. 15 System with disturbance input and with feedback

We then have the system shown in Fig. 15. How does this system oper-
ate? The various blocks shown establish .the following algebraic relationship

y = B [u + C(x (2)

If we solve this equation for y by ordinary algebra:

y = Bu + BC (x -

Bu + BCx - A y=

y (1 ) = Bu + BCx
BC

xC u+
1+C1 + A A

BA ABC
A+Cu A+C

C-1.14

Y =

Y = (3)
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Now we have said in the figure that C is to be very large. If C is
much larger than A, the denominator term (A + C) is very nearly just C.
Hence, the last equation above becomes

B
Y --c

A u + ABx (4)

Equations (1) and (4) are the two expressions for the output y without
feedback and with feedback. They are repeated here for comparison:

No Feedback y = Bu + ABx
A

Feedback y = B-t-u + ABx

The wanted portion of the output (i. e., ABx) is the same in the two
undesirable part is, however, quite different. If A = 10 and C =
example, feedback reduces the effects of the disturbance signal u
of 100: With these same numbers and B also chosen equal to 10,
systems are shown in Fig. 16. Comparison of these two block diagrams

cases.
1000, for
by a factor
the two

reyeals

The

X
1141.

I0

iu

IMMIINI

y = 10u+ 100x

X -2110001--IP. + 1-.-1 10

±.141100

_- t0 U + 100x

Fig. 16 Systems with and without feedback (disturbance signal is u)

that feedback yields the 100: 1 reduction in the effects of the disturbance. The
cost of this is a more complicated system, since the feedback structure involves
several blocks not necessary in the simpler structure.

In this section, two examples are considered: the former (the ship
navigation problem) shows in general terms the value of feedback; the latter,
represente'd in the above block diagrams, demonstrates quantitatively the
manner by which we can often calculate the beneficial effects of feedback. The
engineer or system designer must, of course, decide whether the benefits of
feedback exceed the cost of greater system complexity. In many engineering
problems, feedback represents the only economical way to control disturbance
signals.
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It is appropriate to close the section with one additional example. As
you have read this section, you hopefully have participated in a systems
problem. The author and publisher have combined to generate a small input
to the student's mind; the system output is your level of understanding of the
section.

Since, your mind may possibly have been subjected to disturbance in-
puts as you were reading, (interrupting telephone calls, television, and so
forth), we should attempt to control the effects of such disturbances with the
use of feedback. A simple form of feedback in this learning system depends on
the use of a set of questions to measure the system output (your degree of under-
standing). If the output is not at the desired value, the questions refer you
back to an earlier portion of the section so that the input signals can be repeated.

Question 1: What is a primary use of feedback? If you are at all
uncertain of the answer, a complete re-reading of the section is
recommended.

Question 2: When feedback is used, what signal must be measured?
Once this measurement is made, feedback usually involves a comparison,
Why? If you are uncertain, the navigation example should be re read.

Question 3: In the block diagram of Fig. 17, the gain K is to be

DISTRRBANCE]INPUT ADDER
OUTPUT

NON- FEEDBACK SYSTEM

y

FEEDBACK SYSTEM

Fig. 17 Two systems with disturbance input

chosen so that the part of the output due to x is the same for the
two systems. Determine K. Which system results in less influence
of u on the output? By what factor is the disturbance effect decreased?
If you have any difficulty with this problem, it would be advisable to
return to the discussion starting at Fig. 14.

We have now inserted the first type of feedbacK. Additional feedback is
inserted by your class discussions; with these various feedbacks, our theory
tells us that it is certain that the student's level of uncertainty will be controlled
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regardless of any disturbance signals. When this system output is measured
in the future by an exam, the change can not help but be marked.

C-1.5 ANOTHER ADVANTAGE OF FEEDBACK

Feedback has another very important capability: feedback can be used
to compensate automatically for changes in the system. In this section, we
first consider this characteristic quantitatively, then consider a few of the
important and common illustrative applications.

The ability of feedback to compensate automatically for system changes
is explained by consideration of Fig. 18. For the system without feedback

X
GAIN =10

41111111111I a===III0

y

NON- FEEDBACK SYSTEM

we have

X
41=111111.11 COMPARATOR

ERROR.,

x

'10
NMI

1000
AN11,

FEEDBACK SYSTEM

Fig. 18 Two comparable systems

y = 10x

The output is 10 times the input. For the system with feedback

y = 1000 (x -
10

or

or approximately

y = 1000x - 100y 101y = 1000x

y = 10x

Thus the two systems behave in essentially .the same overall fashion.
Each gives an output which is ten times the input. If the input were from a
microphone, for example, each system would give an electrical output signal
amplified by a factor of 10.

C-1.17



www.manaraa.com

Very often, however, amplifiers vary during operation because of
changes in voltage from the electrical outlets, changes in transistor character-
istics, and so forth. If the amplifier gain drops by 10%, how does each system
above behave?

The system without feedback is easy to analyze. If the amplifier gain
falls by 10% (from 10 to 9), the output y = 9x: the output also falls by 10%. The
feedback system behaves quite differently. Here the amplifier gain is now 900
(10% less than 1000), and

or approximately

1y = 930 (x - 10 y)

y = 900x - 90y

91y = 900x

y = 10x

The output is unaffected by the 10% change in amplifier gain. Thus, feedback
makes possible satisfactory system operation, even when the characteristics of
system components change rather radically in the course of time.

The extent of the value of feedback is emphasized by the question: in the
feedback system above, how much must the gain of the amplifier drop from 1000
before the output drops by 10%. Again simple algebra suffices for the calculation:
if the amplifier gain is G (instead of 1000), the output is

1
y = G 10

Y)

If y is to be equal to 9x (rather than the normal 10x)

9x = G (x - 10x)
19x = G -17x

G = 90

That is, the amplifier gain must drop to 90 (91% below the normal value of 1000)
before the feedback-system output drops by TUT.

This rather remarkable characteristic of feedback is termed by engineers
the control of system sensitivity (i. e., how sensitive the system properties are
to changes in particular parameters or characteristics). Feedback can be used
to keep the sensitivity small.

Certainly one of the most familiar examples of a feedback system in en-
gineering is the regulation equipment for the central1-teating system in a house.
In a typical oil or gas system, a single furnace supplies heat to all parts of the
house (in the system with electric heaters, each room can be controlled separately).
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The output of the system is the temperature, for examIlle in the living room.
The input signal is the desired temperature for comfort. The thermostat
measures the output and compares this measured value with the desired value
(the input which is set manually on the thermostat). Tile 'System is shown in
Fig. 19.

DESIRED
TEMPERATURE

THERMOSTAT

(SET MANUALLY)

ELECTRIC

ON- OFF
SIGNAL

ACTUAL
TEMPERATURE

FURNACE

.=.416
HEAT FLOW
TO HOUSE

THERMAL
CHARACTERISTICS ACTUAL

OF HOUSE TEMPERATURE

Fig. 19 Elements of household heating system

When the actual temperature drops a predetermined amount (e.g., 2°)
below the desired temperature, the thermostat relay closes and the furnace is
turned on. Heat is developed and flows through the house. The actual tempera-
ture rise resulting from this heat flow depends on the thermal characteristics
of the house (the windows and doors that are open, the insulation provided from
the outside, the degree to which air is circulating through the house, and so
forth).

Regardless of these thermal characteristics, however, heat is supplied
by the furnace until the actual temperature rises to about 3 above the desired
temperature. At that point, the thermostat relay opens, the furnace is shut
down, and the heat flow terminates. The speed with which the changes occur
depends on the particular form of the system; for example, if heat is transmitted
through circulating hot water, heat continues to flow into the room from the
radiators after the hot water stops circulating until the water cools. In all
cases, however, the basic operation of the system is the same.

If the desired temperature (the thermostat) is set at 72o, the living room
temperature near the thermostat fluctuates between about 70 and 75° and never
exceeds these limits as long as the outside temperature is low and the furnace
system is sufficiently large to heat the house properly. The performance of the
total system is completely independent of the thermal characteristics of the house
and the outside temperature. The feedback permits essentially perfect system
performance over an exceedingly wide range of thermal characteristics for the
house. Indeed, from the viewpoint of comfort and livability, the feedback permits
realization of an ideal system: we can open the front door in winter for sizeable
periods of time without losing control of living-room temperature.

A second example of the astonishing ability of feedback to compensate
automatically for changes in system characteristics is provided by the analog -
computer kits used in this course. The integrator in this kit consists of an
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"

Fig. 20 Courtesy: GENERAL ELECTRIC

This is a model of a set of "mechanical muscles" that will give a human
being the strength of a giant, and permit him to lift a 1500-pound load
while exerting only a fraction of this force. Attached to its operator
at his feet, forearms, and waist, the machine -- nicknamed HardiMan --
will mimic and amplify his movements.
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amplifier with feedback through a capacitor. The overall operation of the device
is essentially independent of the characteristics of the amplifier. The gain of
the amplifier can change from 1000 to 500 to 5000, and the output remains an
accurate measure of the integral of the input signal.

A third example is shown in Fig. 20, a picture of a mechanical amplifier
to increase the effective strength of a, man. The mechanical machine is worn by
the operator like an external skeleton, attached to the operator at the feet, fore-
arms and waist. As the man moves his arms, the exact motions are repeated
by the machine powered by hydraulic motors (similar to the power steering and
power brakes used in cars). The device can lift loads of 1500 pounds.

In order to permit the man to control the machine adequately in spite of
widely varying loads, a fraction of the load forces acting on the skeleton are
applied to the man's arms and legs. For example, if the machine's arm hits an
object, the operator feels a fraction of the impulse force on his own arm. In
this way, the machine becomes an extension of the man; the operator can use the
machine in a normal way to move unusually heavy or cumbersome loads or objects
that are particularly dangerous, such as bombs. The force feedback to the human
being is the key to successful operation over the entire range of load conditions.

Again as in the last section, we close with one final example and attempt
to add feedback to the learning system represented by the above discussion. In
this learning system which involves the author, publisher, and reader, the charac-
teristics of all three elements vary widely; we should attempt to ensure the pro-
cess of understanding by adding feedback in the form of a few simple questions.

Question 1: What are the two primary uses of feedback in system design --
the applications discussed in this and the preceding section?

Question 2: For the systein shown in Fig. 21, determine the percentage
change in overall system gain when the amplifier gain falls by 20%.

COMPARATOR
AMPLIFIER

GAIN = 100

Fig. 21 Simple feedback system for Question 2.

Question 3: Figure 22 shows a more complex feedback configuration.
Determine the change in overall system gain when the amplifier gain
decreases by 90%. This is a rather unusual system, since it turns out
that y is independent of the amplifier gain even though y is the output
of the amplifier. Thus, even if the amplifier gain dropped to 0. 001,
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the output y would be unchanged. The system begins to suggest some
of the astoninshing characteristics which can be achieved when feed-
back is used.

COMPARATOR

1/10

Y
10

GAIN 10
AMPLIFIER

low
GAIN =10010(X-- +Z)

10

Fig. 22 A system with two separate feedback paths.

In this and the preceding section, the two basic purposes of feedback are
described. We consider a familiar feedback system as a final example of these
properties.

C-I. 6 A FEEDBACK EXAMPLE

The ideas of the last two sections are sufficiently important so that it is
desirable to emphasize them with one final example of a feedback system. For
this purpose, we consider in this section the general, qualitative discussion of
the system in a human being for the control of the internal body temperature.
The system as described below is interesting because it illustrates an important
case in which feedback is used to ensure highly accurate system performance in the
presence of large disturbance signals and large changes in component characteris-
tics.

The normal temperature of the core of the body (the internal organs and
the central nervous system) is about 98.6 F (actually the British consider the
normal temperature to be098; presumably in this country we use 98. 6 since this
corresponds to exactly 37 Centigrade). This temperature must be controlled very
accurately: cells of the central nervous system are damaged if the temperature
rises as much, as 7°; an even smaller drop in temperature results in greatly
reduced enzyme activity within the body. In the normally healthy individual, the
temperature is controlled within + 2 F.

This control of core temperature is achieved with an ambient temperature
variation of more than 100°F and the wind velocity changes from zero to very
high values. We recognize the similarity between this system and the example
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of the last section: the control of temperature inside a house. In the human
system, however, nature provides several different means by which tempera-
ture is measured as well as several different sources of heat (rather than the
single thermostat and furnace common in houses).

In order to construct a model of our system, we must understand the
basic elements of the system. From a thermal viewpoint, the body consists
of three principal parts:

(1) The core
(2) The skeletal muscles
(3) The skin

In the control of core temperature, the human being uses several
different procedures to vary the heat available in the core:

(1) The basal metabolic rate (BMR) is generated primarily in the core.
The oxygen inhaled is transported by the blood to the cells where fat is stored.
The oxidation or burning of this fat results in release of carbon dioxide to the
blood and release of heat energy. When the BMR is measured during a physical
examination, the patient is not permitted to eat for at least 12 hours in advance
of the examination and reclines in a totally resting position. The net oxygen
consumption of the individual is then measured to determine the BMR, the rate
at which the man is converting fat to energy internally. During exercise or deep
anxiety, the net oxygen consumption rises sharply (vie may breathe rapidly and
the heart rate increases to augment oxygen circulation). Temperature control,
however, is achieved by control of the metabolic rate through the endocrine
gland which receives electrical signals from the brain which dictates an increase
or decrease metabolism.

(2) The muscles also provide a source of heat. If the skin detects a sharp
drop in outside temperature, electrical signals are transmitted from the brain
to the muscles to order shivering. Here adjacent muscles (the same ones nor-
mally used for motion or useful work) operate in an uncoordinated fashion, with
the result that there is very little useful work and most of the energy is converted
to heat. (Metabolism in the muscles also results in heat generation).

(3) The skin is used to effect changes in internal temperature in two ways.
First, the blood flow to the surface of the skin can be controlled (this is called
the vasomotor effect ). When heat flow out of the body is to be decreased, less
of the warm blood goes to the skin (e.g., during a cold shower). Secondly,
sweating permits the lossof heat by evaporation, and is particularly important
when the temperature of the surroundings is higher than the body temperature.
(Dogs have very few sweat glands, they pant to increase evaporation from the
tongue and the mouth).

Thus, the human being has four primary ways of exerting control over the
internal body temperature: the variation of the metabolic rate, shivering, varying
blood flow to the skin, and sweating. Each of these four types of control is
actuated by signals from that region of the brain which determines temperature
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control. This part of the brain is supplied electrical information about the
internal body temperature and about the skin temperature. These signals
are produced by nerve sensors which respond to temperature and to tempera-
ture changes.

We now have developed a general understanding of the system operation
and are ready to construct a block diagram which shows the important elements
of the system and the various feedback paths. The output of our system is the
internal body temperature (the temperature of what we have called the core).
Another output signal of the body (Fig. 23) is the skin temperature. In addition
to the four primary input signals to the body, there are also disturbance inputs
which influence the core temperature -- signals which result when exeticse
is performed and when the temperature of the surroundings varies.

DESIRED CORE

TEMPERATURE
PORTION
OF BRAIN
FOR

TEMPER
ATURE

CONTROL

SWEATING

AMBIENT RELATIVE
TEMPERATURE HUMIDITY

EXERCISE if WINO )1

e

EVAPORATION

BLOOD
FLOW VASOMOTOR.

CONTROL

"ICELLS
METABOLISM

BODY

( CORE MUSCLES,
SKIN, BLOOD)

CORE
TEMPERATURE

MUSCLES! SHIVERING

(SKIN SENSORS AKIN
TEMPERATURE

ICORE SENSORSH-

Fig. 23 Thermal regulating system for temperature of body core

The primary input to our system is the desired core temperature (nor-
mally 98. 6°F). In case of illness, this input is probably increased to produce
a fever. Medical research has not yet indicated clearly how this change is
accomplished. In the brain, the measured core temperature is compared with
this desired value to yield an error signal to start correction of the output. It
is interesting to note that the human system shown in Fig. 23 also includes a
measurement of skin temperature, in order to anticipate heat demands when the
external environment changes rapidly (as it does when one enters a hot or cold
shower or moves from the inside to the outside of a house during cold winter
weather). In our analogy to the home heating system, the skin sensors corres-
pond to outdoor thermometers connected to the thermostatic control system to
anticipate sharp changes in the outside temperature.
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The block diagram of Fig. 23 includes the primary elements and signals
which are now believed to constitute the temperature control system of the
human being. What is the value of a diagram of this sort? How does such a
description of the system aid the researcher in learning about the operation of
the system? How might the model help in developing improved medical pro-
cedures?

The answers to these questions are difficult unless we develop a much
more detailed model. We should consider each block in Fig. 23 and attempt
to determine an appropriate mathematical representation (from experimental
measurements on human beings or from an understanding of the physical laws
explaining the behavior of the element). Such an effort would require, however,
an entire chapter or more, for stating the scientific knowledge available today
on these topics -- and we would have a book on psysiology rather than the man-
made world. Certain comments can, however, be made just from this block-
diagram model.

First, the importance of feedback is apparent. The internal body tem-
perature changes very little (typically less than a degree) when the human being
passes through radically different environments; feedback almost eliminates
completely the effect of disturbance signals. Second, the core temperature is
almost entirely independent of changes in the body properties. Major changes
can be effected by amputation or surgery, for example; minor changes, by
injury or normal activites such as changing clothers. Feedback yields a system
in which performance is almost independent of system characteristics over wide
ranges.

The model also indicates the scientific research required for a more
complete understanding of the system and can be used to guide further experi-
ments. As we mentioned above, detailed understanding depends on a detailed
model; such understanding can be achieved only if experiments can be devised
to permit determination of the mathematical relations represented by each
element. The model indicates basic questions: for example, how is the input
signal changed (if it is) to cause a fever in a patient who is ill. Further study
of this question may indicate that the input is not changed, but rather that the
system loses effective control during illness. If the latter is true, perhaps
major efforts should be made to hold down the temperature of an ill patient.

Furthermore, our model is admittedly approximate. As science advances
rand detailed experiments are performed, interactions and interrelationships
not represented in the model will be discovered. When the model is then revised
new experiments will be suggested to improve further our understanding of the
system. Thus, the feedback model is a key tool in the development of scientific
understanding.

Finally, the model of this aspect of the human being may well indicate
improvements in analogous physical systems. We have already examined the
close similarity between this human control system and the house heating system,
and the suggestion of a set of outdoor thermometers to improve internal tempera-
ture control. The vasomotor and sweating actions suggest similarity with the air
conditioning complement of the heating system.
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Final feedback question: In hibernation, what changes in the system would you
expect to occur (if the model represented a bear rather than a human being)?
Which elemencs of the system would be operative during hibernation? Normally,
a bear's internal core temperature drops to about 42°F in this period; why is
it desirable to reduce the bear's body temperature to this lower value?

C-1.7 INSTABILITY IN FEEDBACK SYSTEM

Feedback is, as we have seen, primarily of interest in goal-seeking
applications: systems in which the quality of performance is measured by how
close we approach the design goal. In the example of navigating through the
reefs, the goal is to place the ship in the center of the channel; in the human
temperature control system, the goal is a constant core temperature of 98. 6°F,
regardless of ambient temperatures or physical or emotional activity.

For the production of a system which achieves a desired goal, feedback
serves as an important engineering or scientific concept. Feedback permits
the successful design.

The impressive success of feedback in controlling both disturbances and
Changes in the system component characteristics involves certain inherent dis-
advantages. We have already seen that feedback normally requires a more
complicated system (the output signal must be measured and compared automatic-
ally to the desired value of the output in order to calculate an error signal which
can be used to correct the output). In this section, we discuss a second, major
disadvantage associated with the use of feedback: the possibility that the system
may be unstable.

In very general terms, a system is unstable if its output goes out of con-
trol. Perhaps the most dramatic example of instability is the hydrogen bomb;
here a small detonation rapidly grows into a major explosion. There are many
other examples. Visitors to Bermuda observe the abundance of lizards on the
island. Some years ago, a few lizards were brought to the island to control the
mosquitoes; the lizards rapidly multiplie , the mosquitoes disappeared, and the
islanders are now worrying about controlling the lizard population.

Perhaps a more familiar example is the instability occurring when a car
goes from an understeer to an oversteer condition. Understeering means that,
as the car traverses a curve, there is a tendency for the car to pull out of its
curved path, that is to increase its radius of curvature (Fig. 24). To follow the
road, the driver must insert more and more turning of the steering wheels. In
the oversteer case, the automobile characteristics tend to decrease the radius,
to "tighten" the turn; to compensate the driver must ease up on the steering wheel
during the turn.

The study of an automobile behavior during turning is an exceedingly
complicated engineering problem since the motion depends on the road angle
and surface and on the rapid actions of the driver. The dangerous situation
occurs when the automobile at a certain speed passes from an understeer to
an oversteer condition; the driver, if not aware of the change, tends to turn the
steering wheel to the wrong extent and to try to correct car position improperly.
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Fig. 24 Path of a car around a curve

A most important and difficult problem in automobile design is to ensure that
such a transition does not occur abruptly during operation under any conditions.

An Example

In order to emphasize the nature of instability in a feedback system, we
return to our earlier navigation example, shown again in Fig. 23. The ship
is 10 nautical miles (n. m. ) south of the channel center; the navigator sights
the channel markings and orders a heading due north; the fog now settles in
and no further navigation is possible.

The problem is complicated by a current, which in the preceding
example was assumed to be 2 knots toward the east. In the present example,
we change the current to a more interesting signal as shown in Fig.. 26. Here
the current is not constant, but reverses and changes in strength every fifteen
minutes. Admittedly, this particular type of current is not very probable
(a sudden change from +2 to -1. 6 knots taxes one's imagination), but we wish
to avoid complicated mathematical analysis. This particular signal illustrates
what can happen when the current is not constant.

The hundreds of law suits against General Motors in connection with the Corvair
car manufactured during a few years in the early 1960's were based in large
part on the claim that poor engineering resulted in nuch a transition from under-
steer to oversteer. In the first case brought to trial with outstanding engineers
testifying for both sides on the technical aspects, the judge decided for General
Motors. The engineering. problem in such a case is so complex that scientific,
mathematical, or computer analyses and experimental tests often yield no clear
conclusions.
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If we accept this current as possible (even if not probable), the next step
is to determine the motion of the ship through the fog. During the first quarter
hour, the ship travels north 2.5 n. m. and (because of the current) east 0. 5 n. m.
During the second quarter hour, travel is again 2. 5 n. m. north, but also 0. 4
n. m. west (the current is now flowing toward the west at 1. 6 knots). The third
fifteen minutes the ship moves 2. 5 n. m. north and 0. 3 n. m. east; the fourth
quarter hour, 2. 5 n. m. north and 0. 2 n. m. west. Thus, the ship reaches the
reef line in one hour and only 0. 2 n. m. east of the center of the channel. Indeed,
the maximum deviation of the ship from its desired course is only 0. 4 n.m.,
occurring at both points A and C in Fig. 27. The system is certainly stable:
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Fig. 27 Path of ship with no feedback and varying current.

there is no loss of control over the ship position. The actual path travelled by
the ship differs only slightly from the desired northerly direction. Thus, even
without feedback, the channel is successfully negotiated.

Will feedback improve the system? Certainly if the feedback is continu-
ous (with the navigator continually observing the channel markers), common
sense tells us the path followed by the ship will have the general appearance
shcr!kin in Fig. 28. Each time the current changes abruptly (at points A, B, and C),

11110
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START

Fig. 28 Path of ship with continuous feedback and varying current
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the helmsman requires a little time to estimate accurately the new value of
the current. During this period of measurement and estimation, the ship
departs slightly from its desired course. As soon as the helmsman determines
the new value of current, however, he adopts a course accurately set to bring
the ship to the middle of .the channel if the current does not change again. Thus,
the system with continuous feedback behaves admirably and, indeed, has all the
advantages associated with feedback (including the proper system behavior for
any reasonable variations in current).

If the feedback is intermittent, however, performance may be quite
different. For example, we consider the case in which the fog lifts momentarily
every fifteen minutes and the helmsman is an intelligent individual who tries to
estimate the current in order to compensate in the heading he adopts. The ship
starts its motion due north; in fifteen minutes it reaches A (Fig. 29) 2.5 n. rn.
north of the starting point and 0.4 n. m. east. At this time, the fog lifts; the

REEF
I 0.5n.m.i

west

I

8
( 0.63 n.m.

west

I

I

REEF

C (O.39n.m. east)

A(O.4n.m. east )

START

Fig. 29 Motion with intermittent feedback and varying current

navigator measures his position and calculates the current as having been 2 knots
toward the east. He assumes this current will continue; consequently, to hit
the channel center he must turn the ship so that it will move 7.5 n. m. north
while travelling 1. 9 n. m. west (0. 4 to return to the center and 1.5 to compensate
for the anticipated current during the next 45 minutes).

During the second quarter hour, therefore, the ship would move 2.5 n. m.
north and 0. 67 n. m. west if there were no current; the current of 1.6 knots to-
ward the west adds 0.4 n. m. to this motion. Point B in Fig. 29 is therefore
5 n. m. south of the channel center and 0. 63 n. m. west.

We have simplified the calculation by assuming the ship moves 2.5 n. m. north
each 15 minutes. Actually, this corresponds to a speed through the water of
slightly more than 10 knots.
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The poor navigator now sees the channel again and realizes the current
has been 1.6 knots to the west. He assumes he will reach the channel center
by heading the ship so as to move 5 n. m. north while going 1.43 n. m, north
eastward (0.63 to return to the centerline, 0.8 to compensate for the current
during the remaining 0.5 hour). As a result, travel from B to C results in
2. 5 n. m. north, and an eastward motion of 0.72 n. m. (with no current) plus
0. 3 n. m. (due to the current of 1. 2 knots for 1/4 hour). Hence, C is 0.39
n. m. east of the centerline.

Similar calculations show D is 0. 5 n. m. west of the channel center: on
the reef. The intermittent feedback results in a system, in which the output is
not controlled. While the distance from the desired path does not increase
steadily (instead it rises and falls alternately), there is only a weak tendency
for the ship's course to approach the desired path as time progresses. Indeed,
the deviations would actually tend to grow if the current became stronger rather
than weaker as time passed -- and the system would not be stable during the
short period required to move toward the channel.

Thus, the use of intermittent feedback results in a total breakdown in
system performance. With no feedback, the system operates satisfactorily,
when feedback is used every 15 minutes, the system is unsatisfactory. We then
not only fail to realize the advantage of feedback, but also fail to achieve the
performance of the system without feedback.

Another Example

The possibility of instability is a basic limitation on the use of feedback.
In most systems, when feedback is inserted we are concerned with the possibility
of instability. While the topic of stability is discussed again in a subsequent
chapter, it is desirable here to consider an additional example of instability.

Perhaps the most familiar use of feedback occurs in the manual operation
of touching a pencil which is on the top of a table. In this system, the output
is the position of the pencil. The man observes the difference between the actual
output and the desired value, and corresponding electrical signals from his brain
to the muscles produce the required change in the output (Fig. 30). In addition to

PENCIL
LOCATION

EYE
(VISUAL

MEASUREMENT )

I

BRAIN
NEURO
MUSCULAR
SYSTEM

HAND POSITION

Fig. 30 Feedback system involved in picking up a pencil
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the main feedback through the eye, there is an additional feedback path directly
from the muscular system to the brain: as the muscles are actuated, the in-
dividual senses the forces and motion resulting. * As soon as the hand touches
the table top or pencil, there is an additional feedback path (not shown in the
figure) which results from the sense of touch.

The above feedback system is normally superb. It operates satisfactorily
even when disturbing signals are present (e.g., motion of the system when the
task is performed within an airplane or moving vehicle) or when system charac-
teristics change (the individual is tired, weak physically, or distracted mentally
by other events).

The possibility of instability exists, however, when individuals suffering
from an illness called ataxia attempts this task,the hand starts to oscillate as
it approaches the pencil. The man is unable to pick up the pencil because of the
violent shaking of his hand.' The loss of system control results from oscillation
or instability within the feedback structure.

Instability Delay

The determination of the point at which instability occurs in a feedback
system is a difficult task mathematically and analytically. Intuitively, we can
understand some aspects of the problem by a consideration of the simple system
of Fig. 31. Here the input is compared with the output, and the error signal

INPUT
COMPARATOR

OPEN

ERROR SIGNALH
PROCESS

OUTPUT

Fig. 31 Feedback system with feedback path opened

drives the process to change the output in a direction to reduce the error.

If the feedback is removed by opening the system as shown in the figure,
we can consider operation when the input is a varying signal. There is always
some delay in the process being controlled, and the output follows the delayed

The existence of this internal feedback path is apparent if the man closes his
eyes after initially observing the pencil location. He still can sense how far his
hand has moved and approximately where it is located.
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input. This output is fed back to the input at the comparator. If the time delay
is such that this output reinforces (or adds to) the input, the system may become
oscillatory: the input causes a certain output, this is fed back and augments
the input, the even larger output is in turn fed back, and the output signal grows
larger and larger.

The above description is certainly not rigorous or, indeed, any real help
in determining whether a feedback system will be stable or unstable. The para-
graph does, however, indicate that delay in the system is a key to the instability
phenomenon. The delay (which we find in every real system) is essential to
instability in a feedback system. In general, the greater the delay, the more
tendency there is for the system to become unstable.

In the two examples considered previously, the source of the delay is
apparent. In the navigation example, the helmsman sets his course on the basis
of knowledge about the current in the past. In the system for positioning the
hand to touch a pencil, the delay arises from the time required for the brain to
reach a decision and the time needed to move the muscles.

Final Examples

The possibility of instability in feedback structures can be illustrated by
many other examples: here we mention only a few:

(I) In inventory control, a company observes its sales of a particular
product and then decides on manufacturing schedules accordingly. If the com-
pany wishes to keep its customers happy, it must have enough completed products
in its warehouses to ensure its ability to satisfy rush orders. On the other hand,
completed and unsold products in the warehouse represent dollars not working for
the company. Thus, decisions are required in an attempt to realize an optimum
policy.

The feedback system is complicated by two primary delays: the delay in
manufacturing (if the demand ri-Aes sharply, time is required to increase the
factory output because of the delays in obtaining raw materials and the time re-
quired for manufacture), and the delay in measuring changes in orders and demand
for the product. Instability (or loss of control) results in very large variations
in factory activity ( and the consequent costs of large changes in the work force,
the required training of new employees, and so on), and may lead to warehouses
bulging with unsold products or to major inability to meet customer orders (with
the dissatisfied customers then turning to a competitor's product).

(2) As another biological example of instability, we can consider the
population growth of hydra in experimental environments. Hydra are very
small, fresh-water animals which increase rapidly in numbers when the food
supply is ample. One class of hydra can be fed exclusively on water fleas. As
the hydra population in a closed container grows, the individual animals tend to
become smaller (an automatic adjustment over generations to the population
explosion). Indeed, this regulating or control system may be unstable: the
hydra become so small they are unable to eat the water fleas, and the entire
population dies of starvation. In this case, the feedback mechanism (yielding
the decreasing individual size with population growth) leads to system annihilation.
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Such an extreme effect of feedback in a biological system probably re-
sults from the artificial environment in the laboratory. In a natural environ-
ment, small food sources would be available in at least small quantity, and
some hydra would survive, even though the total population might decrease.
This decrease in population would then result in larger animals, which would
in turn thrive on the water fleas, and the total system would tend to oscillate
around an average population and size.

Thus,in biological systems feedback tends to cause severe or catastrophic
instability only when the natural environment is radically changed -- e. g., by
human intervention. It is this possibility of unstable behavior, however, which
is the basis of much of the national concern today over the impact of technological
development. With the rapid increase in recent years of our technological
capabilities, we are today able to effect major changes in the natural environ-
ment. 4 What feedback system in nature will then be driven into instability?

(3) As a final example of feedback oscillation, we cite a case in which
feedback is used to realize a constant-amplitude oscillation. In the pendulum
shown in Fig. 32, the displaced ball (hung on a string attached to the ceiling at

CEILING

Fig. 32 A swinging pendulum.

0) is moved to A and released. The motion thereafter is familiar: the ball
swings down to B, then on to C where it reaches a maximum height, then
back to B and on toward A. As the ball oscillates back and forth, a little

The possibility of major success in weather control (particularly rainfall) is a
particularly timely example. A more dramatic example is the current techno-
logical feasibility of placing in orbit at an altitude of 22, 500 miles (so that it
sits over the same spot on earth) a large reflector to reflect back to the earth's
surface sunlight during hours when the sun is below the horizon. The darkness
of night would thereby be avoided -- with the consequent, undetermined effects
on nature as well as on man's living habits.
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energy is lost each trip because of air friction and friction at the pivot. Con-
sequently, each return to the left is a little lower than the preceding, and the
pendulum ultimately comes to rest at point B. If we plot the angle 0 versus
time, we find a signal of the form shown in Fig. 33.

TIME

Fig. 33 Gradually decaying oscillation of a free pendulum.

If we desire to keep the oscillations going indefinitely, we can give the
ball a very slight push each time it returns to the extreme left, just as a slight
amount of pumping in a swing, is required to keep the swing moving. Specifi-
cally, we need to impart to the ball the same energy the system has lost in each
cycle because of friction.. With this slight push in each cycle, the 0 signal takes
the form shown in Fig. 34.

TI ME

Fig. 34 Pendulum oscillation with regular excitation

If this were indeed a ball swinging from the ceiling, manual control by a
human being continually tapping the ball would obviously be a tedious task. In-
stead, we can automate the system by surrounding the area at A. by an electro-
magnet, which is energized in such a way as to repel the ball at the top of each
swing (the ball would have to be magnetized also, of course, since we are using
the force between two magnets). Thus, at instants ti, t2, and so forth in
Fig. 34, a pulse of current through the electromagnet gives the ball a slight
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push as it starts its downward swing: just enough of a push to compensate for
the energy lost during the preceding cycle. If we wish, even the timing of the
electromagnet current can be controlled by the motion of the ball -- so that
the current starts slightly after the ball enters the electromagnet near the end
of th up-travel toward A. The system is then entirely automatic and main-
tains constant-amplitude oscillation of the pendulum.

The above system is essentially the basis for an accurate clock operated
by a battery (rather than by winding or from the electric power lines). The
clock requires no winding and operates for the life of the battery (typically a
year). In this case feedback is used to yield an oscillation; the desired out-
put signal is one which is constantly varying, and we are really using feedback
to obtain a controlled type of instability.'

The system described above is called an oscillators a system in which
the desired output is a constant-amplitude oscillation or a continuing variation.
Electronic oscillators are important components of many electronic systems.
In commercial radio and television, the audio and video information can not be
efficiently radiated from antennas of practical size; hence the information is used

ton.beimpaterstilte z-,kur2i.tude or the frequency of a high-frequency signal (near 106 cycles
per second for radio and 108 for television). Electromagnetic energy at these
high frequencies can be radiated from the antenna and received at the listener's
home. Thus the transmitting system depends on-the availability of electronic
(feedback) circuits which produce voltages oscillating at millions of cycles per
second.

The primary purpose of this section is to emphasize that feedback is
often associated with instability, or a least a susceptibility of the system to in-
stability. The amount of feedback which can be used in a system design is often
limited by the fact we must realize a stable system; otherwise, control is
meaningless. Although the mathematical analysis of instability is a complex
problem (which even in the most advanced engineering work can only be studied
rigorously for relatively simple feedback systems), we can often proceed with
the system design by representing our tentative design on an analog computer to
determine whether it is stable.

Final Question

Determine block diagrams for the three feedback systems discussed in
the last part of this section: the inventory control, the hydra population, and
the clock pendulum In each case, decide first on the system output, the desired
output, and the input signals, then determine the various blocks by considering
the successive cause-effect relationships. It is noteworthy that there is often
no unique solution to the problem of determining a block diagram for a system.

'We should emphasize that stability is of course not necessarily desirable. A
stable system is inherently one which is well controlled, one in which changes
in the output are directly and logically related to the input signals. For example,
perhaps major changes in the poverty status of so many people throughout the
world can be achieved only by a system at least temporarily unstable -- but
with an instability which can be arrested at a new level of. operation.
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two people may choose to emphasize or to neglect quite different aspects of
the system.

Conclusions

Feedback is an engineering concept or viewpoint. To understand and to
design complex control systems, it is often convenient to think of the system
in terms of a block diagram in which one can emphasize the various signals (the
output, the desired output, the input, and the error) and the separate cause-
effect relationships inherent in the separate parts of the system. In a block
diagram, feedback is represented by measurement of the output and comparison
of this measured value with the desired value. The error is then used to change
the output in a direction designed to reduce the error.

Feedback has, of course, been used by engineers for centuries and
appears in natural systems. Perhaps the earliest engineered feedback system
was the plumbing device developed by'the Romans and still used in much the
same form in many homes: the water level control in th'. reservoir at the back
of the common toilet. Here a ball floats on the water, as the level rises with
water supplied from the main water line. When the water level reaches the
desired value (the error is zero), the rising ball shuts a valve which stops the
incoming water. When the water in the tank is released by flushing, the tank
empties, a rubber stopper covers the outlet, and the cycle repeats.

The first major work on feedback-system engineering was carried out at
Bell Telephone Laboratories during the 1920's, as the telephone engineers attempt-
ed to develop a system for long-distance telephony. With the availability of
electronic amplifiers (based on vacuum tubes), telephone conversations were
possible across the United States if amplifiers were used every few miles to
amplify the voice signals. Once a larger number of amplifiers was included,
however, satisfactory system performance required that the gain of each ampli-
fier should not change markedly; otherwise, the volume for the listener might
vary over a wide range. In an attempt to build amplifiers with characteristics
which were constant over long periods of time, the engineers utilized feedback.
The success of the endeavor is indicated by the quality of the American telephone
system today.

Feedback control engineering achieved another major advance during
World War II, primarily because of the importance of feedback systems in
aiming large guns and radar antennas. In earlier wars, guns were smaller
and targets moved very slowly, so that guns could be aimed manually. In
World War II, anti-aircraft gunfire required exceedingly rapid aiming, which
demanded force levels beyond the, human capabilities. Feedback systems were
used to achieve satisfactory control.

Since the Second World War, feedback engineering has continued to be
an integral part of modern technology. Automation essentially involves auto-
matic feedback control of decision-making processes, whether in factories, in
traffic control, in the control of anesthesia during operations, or in the navigation
of space vehicles. In addition, during the past two decades the concept of feedback
has been used in the study of biological, social, and economic systems.
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Problem for Sec. 5 of C-1

Consider the navigation problem described in Sec. 5 (the problem in
which the ship starts 10 n. miles south of the channel). Using a graphical
construction, determine the path of the ship when sightings are taken every 25
minutes. Repeat if sightings are taken every 10 minutes.

Sample Problem: (Try to solve this problem before you read the answer)

For the ship navigation problem discussed in Sec. 8, the current signal
has the form

CURRENT (KNOTS)

4111111111 MEM 1== 411I OMNI =II

P

1/4

!IMO IMOD 411

1/2 1/4
TIME (HOURS)

The current alternates between the values +P and -P. Each quarter hour the
ship moves north 2. 5 n. m. At the beginning of each quarter hour, the helmsman
measures his location and sets a course which (if the current continued as during
the last quarter hour) would return the ship to the centerline in 15 minutes.
Thus, in the figure, if we are at A at the start of the 15-minute period, the
course set would bring the ship to B1 a quarter hour later if the current were
+P. Actually, the current changes to -P and the ship ends up at B rather than
B1. Determine the values of a, b, c, d, when the ship starts from 0.

Solution:

I

B b IBS

ACTUAL

I. I %.
.1

\vsCOURSE SET BY HELMSMAN
COURSE \

.

OF SHIP I \
2.51 '
n.m.i

\
-LI

\
---=' A

1 0

0

(1) The value of a: In 1/4 hour the ship moves P/ 4 n. m. eastward; hence

a = p/ 4
C-1.38
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(2) The value of b: The course is set for B1 if the current is +P.
Actually the current is -P, or we must add -2P to the motion set
by the helmsman. Hence in 1/ 4 hour the ship moves 2P/ 4 or
P/2 to the left of B, . Hence

(3)

Problem:

b = -P/ 2

The value of c: The course is set for the centerline, but the current
is +2P more than expected. Hence

c = + P/ 2

and the ship continues indefinitely to oscillate back and forth between
+ p/ 2 and - P/ 2.

(a) The temperature control for a conventional shower is an interesting
feedback system. Construct a block diagram for the system if we assume that
the man standing in the water spray attempts to control the temperature of the
water reaching him by adjusting the hot-water control knob only. The knob is
at water level on the line leading to the shower head.

(b) The simple block diagram probably derived above can be modified to
include the fact that, when the man changes the knob setting, he estimates the
time delay before the temperature change will be detectable at the surface of
his skin. Show this modified block diagram if your answer to (a) did not in-
clude this part of the system.

(c) The statement is made in the text that time delay is often associated
with instability. Explain briefly how instability is likely to result if the man
underestimates the time delay between turning of the knob and an observable
change in water temperature. In other words, indicate the probable sequence
of events in this case.

(d) The feedback-system stability problem is often complicated by parts
of the system in which a change in input results in no change in output over sig-
nificant ranges (this is one example of what the mathematician and engineer call
nonlinear behavior). For example, in many shower systems there is appreciable
backlash in the knob: as the knob is turned clockwise, the amount of hot water
decreases. If we try to reverse direction (and move counterclockwise), the
first 150 of motion result in no change in hot water flow. It is only after we have
turned the knob through 15° that control is reestablished. This "slippage" or
backlash occurs every time the direction is reversed. Describe briefly how
such a common malfunction may make effective temperature control more difficult
(and may actually lead to instability).
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Chapter C-2

AMPLIFICATION

C -2. 1 INTRODUCTION

The word, amplification, as used in everyday conversation, has many
different meanings. One can "amplify" a fishing story by exaggeration or
"amplify" the size of a 'small object by magnification. A minor occurence some-
times distorts our point of view and we may amplify the importance of the event
thereby making a "mountain out of a mole hill". In this chapter we will not be
interested in these broad implications of the word amplification; rather we will
discuss amplification as an important concept which is extremely useful for
building and studying the man-made world.

We frequently describe the development of the man-made world as an
evolution of man's ability to control his environment. In the beginning man was
severely limited in this task by a lack of available energy for such control. The
only energy available to him was that provided by the human body. Man had to
learn to harness other sources of energy in order to accomplish greater changes
which were desirable and to accomplish this faster. In the earliest days, this
harnessing was accomplished quite literally with beasts of burden such as oxen
and horses. Later man learned to harness the energy of more powerful sources
such as water, wind, fossil fuels, steam, electricity, and finally nuclear power.
In all these instances, the implication that the energy has been "harnessed" is an
important one, for man's concern is to control the flow of energy in order to
achieve a useful result. In particular, he seeks to exercise this control with a
minimum expenditure of energy on his part. In some cases, as in turning on
a light bulb, crude control over the flow of energy is adequate; but often, as in
landing men on the moon, precise control of energy is essential.

To help achieve a controlled flow of energy, man has developed the process
of amplification: the application of a small amount of energy, a signal, supplied
directly by an operator or a sensor to control (or modulate) the flow of a greater
amount of energy supplied by another source. This control is exercised in a
manner such that the output signal of the amplifying device provides much more
power than could be provided by the initial signal.

Amplification has many applications which justify its importance. We have
already been introduced to one of its important applications as a vital element in
a feedback system (see Fig. C-1. 7). We will study several other applications in
this chapter. But to understand any of these applications, the meaning of the terms
energy and power must be made clear. We have used these words throughout the
preceding chapters, and we have intuitive ideas of their meanings. In order to use
these terms perceptively, we must develop quantitative descriptions for them.

C-2. A DESCRIPTION OF ENERGY

Energy is the primary resource which keeps our man-made devices run-
ning. If energy were not stored in the main springs, watches could not operate.
If electric batteries contained no stored energy flashlights or pocket radios
would be inoperative. If gasoline with its internal chemical energy were not
available our automobiles would not run.
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Energy may be contained in a system in many different forms. The energy
stored in the battery of our transistor radio or automobile is in chemical form;
it is released through a chemical reaction. The energy of the water in the
reservoir above a hydroelectric station is stored as energy of position, and it can
be reclaimed by allowing the water to flow to a lower position. The energy stored
in an ionized cloud is stored in electrical form, and it is released by the discharge
of lightning. The energy stored in a stem-wound clock is elastic energy, and it
is released through the unwinding of the spring. The energy in a moving billiard
ball is energy of motion, and it may be reclaimed by stopping the ball.

To become effective,energy must be converted from one form to another, or
transferred from one place to another. The stored chemical energy in an auto-
mobile battery is converted to electrical energy by means of a chemical reaction
and then transferred to the starter motor where it is converted into the mechanical
energy of motion. The energy of flowing water is converted into electrical energy
with generators. This energy is then transmitted through a network of power lines
across great distances to such devices as toasters in our homes where it is con-
verted into heat energy, or perhaps to lamps where it may be converted into light
energy. The chemical energy of gasoline is first converted into heat energy by
combustion in the engine and then into the mechanical energy required to turn the
wheels of our car. The Sun, the dominant source of energy in the solar system,
converts the nuclear energy of hydrogen to electromagnetic energy which is then
transferred to the earth as radiation. Lightning can produce heat energy and
acoustical energy. The billiard ball, even if it hits no other ball, will eventually
come to rest, and its energy converted into minute amounts of heat energy as it
slides and rolls across the surface of the table, strikes the cushions, and per-
haps as it heats the webbing of the pocket.

In this discussion we have implied that the energy which is initially con-
tained within a system is all transformed into other forms of energy. We may
transform only a part of the available energy into other forms. The real
principle behind all energy transformations is that the difference between the initial
energy stored in the system and the energy which finally remains in the system is
equal to the energy converted into other forms. Thus we account for all of the
initial energy: the energy intially available is equal to what remains after a change
has taken place plus the energy which has been converted into other forms. (This
is the basic idea of the principle of conservation of energy which will be discussed
in Chapter C-4. )

The task of the engineer is to use these energy sources and these various
means for converting and transporting energy in an efficient and useful manner
to operate or produce all the things which he designs. He is concerned with the
efficient control of energy conversion. This desire to control energy involves
the need for adaptability and ingenuity in the choice of alternatives. The energy
source, the converter, and the transfer system must be matched to the required
application. The effective conversion of energy requires stable control. Lack of
control or instability usually produces undesirable results. (This aspect of
energy will be discussed in Chapter C-3. )

Mechanical Energy

How do we describe in a quantitative fashion what we mean by the term
energy"? We can attempt to relate it to something in our daily lives. We

recognize that when work is done, energy is expended; when a machine does work,
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it expends energy; and when a system does work, it expends energy. We think
of energy loosely as the capacity to do work. If energy is contained in a system,
and if some way to release the energy is available, work can be done.

In the man-made world the ideas of force and motion are related to the con-
cept of mechanical energy or work. A force must be exerted and its application
must result in the motion of some object, if work is to be done. As we look back
through the preceding pages of the text, this statement becomes more and more
credible, for we realize that the most interesting thing about each force we discus-
sed was the motion that it produced. For example, in Chapter B-4, the study of
the spring-mass model is given in terms of how the displacement of the mass is
changed by a force; resonance is the condition which exists when the displacement
is much greater for a certain time-changing force than for other forces. In
Chapter B-3, we saw that the force on the spring scale is measurable because it
compresses or extends the spring; the force on a phonograph needle causes a
piezoelectric crystal to bend; the force caused by interacting magnetic fields
causes a compass needle to turn. In fact, from the very definition of the unit of
force given in Chapter B-3; that which defines the newton as the force necessary
to give a one-kilogram mass an acceleration of one meter per second per second,
we sense that the most interesting property of a force is the motion it can produce.

In each of these cases a force is applied over some distance, and
mechanical energy is expended. Since force and displacement are the quantities
involved in calculating work or mechanical energy, it is instructive to plot one
versus the other. As a first example, let us consider a constant force fl applied
to a mass through a displacement xl. This situation is plotted in Fig. C -2. 1 and
might physically represent the situation where a vehicle is being pushed with a
constant force f

1
over a distance of x

1
meters. For a quantitative description of

energy, we can use the area under the f-x curve. Thus, we define work as the
energy expended. by a moving force and set it equal quantitatively to the area under
f -x curve.

Fig. C -2. 1 The plot of a constant force f1 applied through
a displacement xl. The work done (i. e., the
energy expanded) during this motion is defined
as the area under the f-x curve.

In Chapter B-3 we saw that the gravitational force on a mass m on Earth
at sea level is 9. 8m newtons. Thus, if we lift this mass to a height of h meters,
we must apply a constant force of 9. 8m newtons through a displacement h meters
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and we therefore do an amount of work:
w = 9. 8mh newton-meters

As an example, if m = 2 kg (about the mass of a good-sized textbook), then the
area under the curve of Fig. C -2. 1 could represent the work done in raising this
mass 2 meters if we let f

1
= 9. 8 (2) = 19.6 newtons and xl = h = 2 m; thus,

w = 39. 2 newton-meters. The unit, newton-meter, has been given the shorter
name joule in honor of the famous British engineer of that name.

The use of area under the f, x curve to define work is sensible because
it illustrates a very important property of energy. As shown in Fig. C -2. 2,
the work done by a force of 10 newtons through a displacement of 2 meters is
exactly equal to the work done by a force of 1 newton through a displacement of
20 meters. Though the plots are different, the areas are identical and indicate
that LO joules of energy nave been expended. Thus, it requires the same amount
of work to move a mass through 2 meters with a 10 newton force as it does to
move the same mass through 20 meters with a 1 newton force.

f
(NEWTONS)

0 2

f
(NEWTONS)

AREA r 20 JOULES

x (METERS)

AREA= 20 JOULES

20

Fig. C-2. 2 The same amount of work represented by
different force-displacement situations.

x (METERS)

In most practical situations the applied force is not constant with
displacement, in which case the computation of area under the f, x curve
may be accomplished by the approximate methods studied in Chapter B-2.
In a general sense then, work is found by integration; that is, according to
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the equation:

W =

as illustrated in Fig. C-2. 3.
f A

(NEWTONS)

c.

iWOO MI= ..1 =IN

x2

f fdx,
x

1

X2
AREA = W = f dx (JOULES)

x, x2
dx

Fig. C-2.3 The general definition of mechanical energy
of work.

x( METERS)

In addition to the computation of energy or work as a product of the force
acting on a mass and the displacement of the mass, the engineer is often con-
cerned with the product of the force acting and the speed imparted to the mass
as a result of this force. This product is a quantitative statement of the rate
at which work is done or the rate at which energy is expended. In Fig. C -2. 4
we again see a plot of force versus displacement. Also displayed is an increment
6x, thra which the mass has been displaced by the force which varies according
to the graph.

f
(NEWTONS)

f
ow =fox

AX

0 x (METERS)

Fig. C -2. 4 In moving a mass an incremental distance 6x
the incremental energy expended is given by the
area of the shaded section.

Let us assume that this displacement occurs in a time interval 6 t seconds. The
transfer of energy during these 6 t seconds is thus given approximately by the
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area of the narrow rectangle.
Lbw = f 6 x

and the rate at which energy is being delivered to the mass is

energy 6 w f 6 x
time 6 t 6t

However, the ratio of 6 x to 6 t is the velocity at that point, as we saw in
Chapter 13-2, Hence,

6 w = fvt
We define power as the rate of expenditure of energy, or as the rate of doing work.
Therefore,

Power = p = fv

The unit of power is of course, the joule per second, and this expression
is shortened to watts.in honor of the British engineer, James Watt, who
designed the first successful steam engine. If we apply a force cf 680 newtons
to raise ourselves a distance of 3 meters (about one flight of stairs), the energy
expended is (3) (680) = 2040 joules. Doing this work in 4 seconds signifies an
average power of 2040/4 = 510 watts during that time interval. This is about
two-thirds of a horsepower. (one horsepower is equivalent to 746 watts)

Power is thus defined as the time rate of change of energy. It may be
helpful to recognize that the relationship between power and energy is the same
as that between velocity and displacement, for velocity is the time rate of change
of displacement. Given a displacement versus time graph, the slope of the curve
at any point gives the velocity; similarly, given a plot of energy versus time, the
power at any instant is given by the slope of that curve at that instant.

Moreover, if we start with a graph of velocity as a function of time, we
know that we can relate the displacement at a time t2 to that at t1 by the area
under the v, t curve,

t
2

X2 = X1 + f v dt
t

1
The analogous relationship for power and energy is important. If we have a
curve of power versus time, as shown in Fig. C -2. 5, the energy expended at
time t 2

may be found in terms of the energy expended at t1 and the area under
the power versus time curve: t2

w2 NN=

1
+ f p dt

tl

Thus, given the curve of power versus time, we can find the total energy
supplied between any two instants, and, conversely, given the energy versus time
curve, we can find the power or rate at which energy is being supplied at any
instant.
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AREA = w2- = pd t

ti

t (SECONDS)

Fig. C -2. 5 The area under the power versus time curve
gives the energy supplied by the power source
during that time interval.

Electrical Energy

Before any quantitative statement of electrical energy and power can be
made, there must be a definite meaning to the terms "voltage" and "current".
Although we have used these words previously, we have only referred to them in
general terms.

Current, for example, was defined as the rate at which "electricity" is
moving along a wire, and it is easy to establish a similarity between current and
velocity. Voltage, on the other hand, is closely analogous to force, for we often
consider it to be some form of electrical force that pushes electricity along the
wire. If this analogy is carried one step farther, power, which in mechanical
terms, is calculated as the product of force and velocity, should be the product
of the voltage and the current. Let us however define voltage and current more
carefully and show that power is truly the product of these two electrical quantities.

The study of electrical phenomena begins with the concept of electric
charge and the experimentally demonstrable fact that a force always acts between
any electrical charges. If two charges are both negative, like electrons, or both
positive, like protons, the force tends to separate the charges. If charges are
of unlike sign, the force is one of attraction. If one positive charge is fixed in
position and a second positive charge is brought to it, a force must be continuously
applied through the entire displacement. A force acting through a displacement
represents work or energy so that energy is thus expended to bring these two like
charges closer together.

This energy, that we expend in moving each unit of charge from one point
to another is really the voltage between these two points. Thus, if it takes 12
joules of energy to move one unit of charge from one terminal of a battery to
another, we say that the voltage between the battery terminals is 12 volts. A 12-
volt automotive battery, for example, will deliver 12 joules of energy to each unit
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of charge that leaves one of the terminals, to flow through the headlights or the
car radio, and back into the other terminal. In starting a car on a cold morning,
the battery may deliver 200 units of charge to the starting motor; it therefore
supplies 2400 joules of energy to the starting motor.

Although we have defined the voltage as the energy required to inove one
unit of electrical charge between two points, there is nevertheless an a-,,:alogous
relation between force and voltage. Since work or energy is calculated as force
multiplied by distance (w = fd), if a unit distance is assumed, then the numerical
values of w and f must be equal. It is therefore possible to compute the energy
as numerically equal to the force required to displace an object through one unit
of distance. The electrician usually interprets the concept of voltage as a force
which acts on electrical charges to produce a displacement of these charges.
This mechanical analogy is helpful and sufficient for his needs.

Just as it is possible to think of voltage as analogous to force, it is also
possible to establish an analogy between electric charge and displacement. The
analogy arises from our definition of current as the quantity of charge flowing
through a wire in each second. A current of one ampere represents a flow of one
unit of charge per second. While starting our cold engine, the current may be as
high as 200 amperes. Thus, 200 units of charge leave one terminal of the bat-
tery every second and flow through the starting motor and back to the other bat-
tery terminal.

The analogy between current and velocity appears from the definitions of
these two-quantities. Current is charge per unit time, and velocity is displacement
per unit time. Again we see that charge in an electrical system is analogous to
displacement in the mechanical system.

Now let us turn our attention to power. Since voltage is the energy trans-
ferred for each unit of charge and current is the number of unit charges transfer-
red in each second, then the product of current and voltage must be the energy
transmitted in each second, or the electrical power which has been converted.
In our 12-volt battery supplying 200 amperes to the starting motor, we see that
the battery must deliver 12 joules to each of 200 units of charge every second.
In other words, it is supplying energy at the rate of 2400 joules per second, or
2400 watts, since we have defined c ne watt as the equivalent of 1 joule per second.

We can express these results symbolically. We shall use the symbol e,
for voltage (in volts), and i for current (in amperes). Power ,s thus given by the
product of the current and the voltage:

p = e i

The analogy between mechanical and electrical quantities that we have
developed is summarized in Table C-1. The following pairs of mechanical and
electrical quantities are analogous: force and voltage, velocity and current, and
displacement and charge. Mechanical power is given by the product of force and
velocity; electric'al power is given by the product of voltage and current. Since
energy in a mechanical system is given by the product of force and displacement,
our analogy provides the information that energy in an electrical system is found
from the product of voltage and charge.
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Table C -2. 1 The Mechanical - Electrical Analogy.

Mechanical Quantity Electrical Quantity

f, force
v, velocity

displacement
p = f v, mechanical

power

e, voltage
i, current

charge
p = e i, electrical

power

The energy delivered by an electrical power source may be found from
the area under the curve of power versus time, as illustrated previously in
Fig. C-2.5. The watt-hour-meter found at the point where the wires from the
electric utility company enter a house is a meter which measures electrical
energy. The speed at which an aluminum disk in the meter turns is proportional to the
power being supplied at that instant. The small dials register the number of revolutions
which the desk has made in any given time. The power and time factors are thus
related to the speed and time factors of the rotating disk, so that the number of
revolutions indicated on the dials is related to the total electrical energy which has
been transferred to whatever electrical device is attached to the circuit. The
dials record the electrical energy in kilowatt-hours. One kilowatt-hour represents
1000 watts of power flowing through the circuit for one hour. Each watt is equiva-
lent to 1 joule per second, so that one kilowatt-hour is equal to 3,600, 000 joules.
The average cost of this quantity of energy is between two and three cents in many areas.

C -2. 3 COUPLERS AND THE CONCEPT OF MATCHING

The energy required to elevate one corner of an automobile high enough
to change a tire is about the same as the energy required to walk up a flight of
stairs. Thus, the total energy required to lift the car is well within the capability
of a man. Yet we know that to grasp the bumper of the car and to attempt to lib_
the car will be of little consequence, and will get us nowhere. We know that
a man has the necessary energy to perform this ace What is the problem?

The answer to this question is illustrated by the f, x curves of Fig. C-2. 2,
where 2 identical quantities of energy are represented by two etifferent force-
displacement situations. The shape of Fig. C-2. 2a is typical of the f, x relation-
ship required by the car (large force, small displacement) while that of Fig.
C-2. 2b is typical of the f, x capabilities of the man (small force, large displacement).
The engineer describes this situation by saying that although the energies are
equal there exists a poor "match" between the small force a man can exert with
his muscles and the large force required to lift the car. To lift the car a device
is required which will transform the force a man can normally develop into a force
large enough to raise the automobile; a device which will match or couple the
force of the man to the force required to lift the car. Such devices are called
couplers or transformers, and for the automobile, the coupler is obviously a
bumper jack. The jack provides a link or comae between the man and the car and
transforms the force the man can exert (the input force) into a force which matches
the force necessary to elevate the car (the output force). Notice, however, that in
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this operation of "force transformation" or "energy coupling" the man himself
must provide all the energy needed to lift the car. In other words, there is no
external source of energy added to the coupled man-jack system.

C -2. 4 AMPLIFIERS AND THE CONTROL OF ENERGY

Civilized man has built many devices to transform the forces that his
muscles can exert. In addition to the mechanical jack (a form of lever) which
was mentioned in the preceding section, the wedge, screw, pulley, hydraulic
jack, and gear train are additional examples ox man-invented force transformers
or couplers. These devices, though certainly useful, have an important limitation.
Although the energy which a simple machine can supply at its output is ideally
equal to the energy the man can deliver to the input, energy losses resulting from
friction cause.the actual energy output to be less than the energy input. Any energy
required to assist man must come from somewhere, and all these simple devices
provide no source of energy other than that supplied by man.

We have already seen that the force exerted by human muscles is quite
limited; a coupler or transformer is needed to enable us to lift a car. Similarly,
the power,, or rate at which our muscles can expend energy, is also limited. For
example, suppose we attempt to produce the electrical power required to light a
250-watt light bulb by turning a crank of an electric generator. Two hundred and
fifty watts is about 1/3 horsepower, about half the amount of power we expend in
running up a flight of stairs. How long could we maintain this output? Most likely,
we would collapse after running up a few flights of stairs and the light bulb would
go out. The rate at which energy is required for, continuous operation is not
within the capabilities of human muscles. What car. we do to overcome this dif-
ficulty?

Man has discovered methods of utilizing energy sources beyong his own
muscle system. The theory upon which the devices that make these energy sources
available is simple. All these devices requLe the use of a small amount of energy
to control the flow of energy from a large energy source. Such energy sources are
available i1i the flow of streams and rivers, in the movement of winds, in tides,
in fossil fuels or directly from the sun. Recently the nucleus of the atom has
been tapped as a source of energy.

But all of these sources of energy are of little value unless some form of
control is devised to insure useful outcomes. Otherwise danger rather than
benefit will develop. One aspect of control of energy is the appropriate transfer
of energy from a source to a place where it can be used effectively. The terminus
of this energy flow is called the load; in other words, the load is the converter of
the energy. We speak of this entire process as "controlling the flow of energy". A
very important consideration in energy control is man's desire to exercise control
with the least expenditure of control energy.

In some cases, such as with the electric light switch, a very crude control over
the flow of energy is achieved. We merely exert enough energy to "clip" a switch.
Often, however, a very high degree of precise control is required (as in a high-
fidelity amplifier, for example). In any case, a device which controls the flow
of energy and produces a large energy flow with a small amount of control energy
is called an amplifier.
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A block diagram of a model of controlled energy flow is shown in Fig.
C-2. 6. As indicated in Section C -2. 1, this model illustrates that all amplifiers
have three properties in common: (1) In addition to the energy of the signal at the
input, they require an external source of energy, (2) they exercise some degree
of control over the flow of this external energy, and (3) the power delivered to the
load is greater than the power of the controlling signal.

EXTERNAL
ENERGY
SOURCECONTROL SIGNAL

INPUT
AMPLIFIER

POWER
OUTPUT

Fig. C -2. 6 Block diagram model of an amplifier showing
the control signal, the external energy source,
and the amplified power output to the load.

C-2. 5 AMPLIFIER CONTROL BY ON-OFF LOGIC

LOAD

The control signal in Fig. C -2. 6 has a variety of forms. It may result
from the movement of a lever, the pressure on a button, the opening of a valve,
the turning of a knob, etc. Of these, one of the simplest ways in which man
controls the f:".ow of energy is by an "on-off mechanism"; that is, an ordinary
switch. This form of energy control was applied usefully in Section A on Logic
and Computers, where relays were used to turn other relays on and off. In some
cases the operation of several relays and lights were controlled by a single relay.
Thus, the energy transferred to the load, consisting of the several relays and
lights, was greater than the energy needed to operate the single control relay.
Such a logic circuit, then, has an external source of energy in the power supply
operating the other relays and lamps. The flow of this energy may be controlled
by a single relay or switch, and the power delivered to the load is greater than
that required to operate the single relay or switch; it is therefore an amplifier,
although in rudimentary form.

As another example of the rudimentary control of energy, consider the man-
made system illustrated in Fig. C-2. 7. This system contains an electric power
supply as the source of energy, a water pump as a load, and an electric switch as
a means of control. (Such systems may be used to pump water from the basements

ELECTRIC
POWER
SUPPLY MOTOR

(AMPLIFIER)

SWITCH
(CONTROL SIGNAL)

WATER PUMP
(LOAD)

Fig. C-2, 7 A crude form of control is illustrated by an electric motor.,
a load, a a switch which is either on or off.
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of homes built in low-lying areas. ) When the switch is in the off position no
energy is transferred to the load by the motor; when it is on, the energy avail-
able from the electric power supply is applied to the pump. Although this
amplifier utilizes a very crude from of control, it is certainly very useful; we
can control the flow of large amounts of energy from the electric power supply to
the load with the expenditure of little energy on our part. However, the only
means by which we can exert some degree of precision in our control is by the
adjustment of the period of time during which the motor is in operation. Thus,
we cannot control the power being transferred to the load but we can control the
amount of energy delivered to the load in any given time interval. The power is
a fixed quantity determined by the external source and the characteristics of the
motor and pump. Our control is limited to transferring this fixed amount of power
or no power at all.

Simple on-off mechanisms can be viewed as diverting the flow of energy.
We can construct many simple control devices which are useful for diverting
other sources of energy. For example, the windmill illustrated in. Fig. C -2. 8
is a simple on-off type of amplifier used to "harness" the energy of the wind.
Control of the energy flow to the load is exercised by changing the direction of
the tail control with respect to the direction of the wind.

ROTATION

FAN

WIND
I

(EXTERNAL
ENERGY
SOURCE)

(a)

TAIL (CONTROL)

GEAR BOX

NO ROTATION

SHAFT WIND

(GEARS AND SHAFT
COMPRISE COUPLER

(POSITION OF TAIL
IS CONTROL SIGNAL

PUMP OR GRINDER (LOAD)
(b)

(b) Tail parallel to plane
of windmill fan.

(a) Tail perpendicular to
plane of windmill fan.
Fig. C -2. 8 The windmill portrayed as a simple on-off type of

amplifier.

In Fig. C-2. 8a, the tail of the windmill is oriented perpendicular to the
plane of the windmill fan. For this configuration, the force exerted by the wind
pushes the tail and aligns it with the wind's direction. This action causes the
fan to turn until the blades are perpendicular to the wind and thus rotate. Through
a coupling system of gears, the shaft rotates as the fan blades turn and water can
thus be pumped or grain can be groi.nd. When the windmill tail is oriented parallel
to the plane of the fan, as shown in Fig. C-2. 8b, the wind flows parallel to the plane

C-2. 12



www.manaraa.com

of the fan and its rotation stops. In this simple amplifier the external source of
energy is the wind, the control signal is the setting of the direction of the tail,
and the load is the water pump.

The production of water power can be controlled in a similar fashion. A

trough or ditch can be used to divert the flow of water to a water wheel as shown
in Fig. C -2. 9. Here the control signal is the positioning of the trough to carry
water to the blades of the wheel, the external source of energy is supplied by the
water, and the load is represented by the generator used to produce electric
power.

RIVER

z 0;...,`, ,/
WATER
WHEEL

ELECTRIC
GENERATOR

Fig. C -2. 9 A water wheel portrayed as a simple on-off type
of amplifier.

C-2.6 OTHER AMPLIFIERS

The Automobile

A more versatile example of the control of the flow of energy is provided
by the automobile,which may be considered as an amplifier. The source of
energy in the system is the gasoline-air mixture burned in the engine. The load
is the vehicle itself, and control of energy from the engine is exercised by the
driver. By means of the accelerator pedal, we can control the energy output of
the engine and the speed of the vehicle smoothly and continuously over a wide
range, as indicated by the motion model of Chapter B-2. Moreover, we can
adjust the energy output to meet the demands of variations in the load, such as
one encountered in driving over hilly terrain. It is possible to exercise a much
greater degree of control over the flow of energy from the automobile engine
than is possible with the use of an on-off switch for the control of an electric
motor.

Once an automobile is in motion it must be capable of coming to a stop.
This can be accomplished with a force transformer or coupler: the braking.
system. A moving automobile carries a large amount of energy of motion or kinetic
energy (almost a million joules for a large car at 60 mi/h). To bring the vehicle
to a stop, this energy of motion must be transferred or converted in some way.
The energy may be expended by hitting another automobile or smashing into a

C-2.13



www.manaraa.com

tree. A more humane technique involves the use of the brake pedal to couple
this kinetic energy source to the frictional load that develops between the brake
linings and brake drums. In this manner, the energy of the moving car is
transformed to heat energy.

Since the control of amplification usually involves feedback it is interesting
to examine the automobile system for this function. The block diagram of Fig.
C-2. 10, which models the control system involved in keeping an automobile in a
turnpike lane, clearly illustrates that the driver is an important link in the safe
operation of the automobile.

TURNPIKE LANE
BOUNDARY MARKE

1INPUT SIGNAL)

OUTPUT OF
DRIVER'S DRIVER'S

BRAIN HANDS
CONTROL SIGNAL AND

FEET

CONTROLLED
SYSTEM

FEEDBACK
SIGNAL

DRIVER'S
EYES

(SENSOR)

AUTOMOBILE
(LOAD)

AUTOMOBILE'
HEADING

(OUTPUT- SIGNAL) ell

Fig. C -2. 10 A block diagram modeling the control system
involved in keeping an automobile in a turnpike
lane.

The Human Muscle

Not all amplifiers are man-made. Consider, for example, the muscles
in the human body and how they operate. A control signal is sent from the brain
in the form of small electric impulses. These impulses control the release of
energy which is stored in chemical form in the muscle cells. The muscles move
the arms with sufficient control to assure their proper positioning with respect
to the objective which is sought, with a fair degree of accuracy. Feedback is
definitely involved here and is channeled through the sensors in the body that
respond to touch, sight, smell, and taste. When a feedback mechanism (that
is, a sensory nerve) is damaged or destroyed, control is affected.

In positioning an object manually, the final outcome (or output) is the
position of the object. Wheri placement of an object is accomplished manually
the same degree of accuracy is achieved despite a wide range in size and weight.
This is an example of an important property oi feedback discussed in Chaptei C-1:
feedback causes the amplifier performance (muscle control here) to be relatively
insensitive to fluctuations in loading.

The Windlass

Another arrangement for controlling the flow of energy is the versatile
windlass shown in Fig. C-2. 11. The source of energy in this system is either an
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ENGINE

DRUM

I M I

Fig. C-2. 11 The energy delivered to a load M is controlled smoothly
by a windlass.

electric motor or a gasoline engine. Control of the energy flow is provided by a
manilla or nylon rope which connects the engine to the load. One end of the rope
is connected to the load, the middle part is wrapped around the revolving pulley,
or drum on the engine shaft, the operator holds the free end. If the rope is slack,
the drum rotates freely inside the loose turns, and no force or power is delivered
to the load. When a pull is exerted on the free end of the rope, the turns tighten
on the drum, and friction between the rope and drum produces a tension in the
line which exerts the force on the load. This force can be much larger than the
force which is exerted on the free end of the line. Windlasses are widely used
on ships, sail-boats, and motor yachts for lifting heavy an4hors, trimming sails,
etc. They are also used for digging wells and driving pilings.

To show that the windlass acts as an amplifier, we must determine the
relationship between the input force and velocity, f1 and v1, and the output force
and velocity, f7 and v2, both shown in Fig. C-2, 11. To begin with, we notice
that the two verocities must be equal since there is only a single rope involved;
i. e.:

v2 V1

If v1 is greater than v2, the rope must stretch, the tension in the line will increase,
the 'force applied to the mass M thus increases, and v2 increases until it is equal
to v1. On the other hand, if v2 is greater than v1, the line becomes slack, the
friction force between the line and the drum decreases, the tension in the line
decreases, the force applied to the mass decreases, and v2 decreas:., until it is
equal to v1.

To qualify as an amplifier, f2 must therefore be greater than f1 since the
velocity of the rope is the same at both ends. Fortunately, this relationship is
satisfied because power from the engine is transferred to the load via friction
between the rope and the drum. This output force f2 is actually derived from the
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engine through the rotation of the drum. If the rope were connected directly to
the drum, the power developed by the engine would be applied completely to the
load. But this would represent a condition in which no variation in power trans-
fer is possible, either full power or no power would be delivered.

When the rope is wrapped around the surface of the drum, the force which
can act on the load is transferred from the engine through the friction between the
drum and the wound. section of the rope. The greater this friction the greater
will be the force transmitted. As the frictional force is varied, the force f2 will
vary.

A change in the frictional force between the drum and the rope wound
on the drum is developed by the force f1 which is applied to the free end of the
rope. Increasing f1 pulls the rope more tightly against the drum. This increases
the friction between the rope and the drum and thereby permits a larger fraction
of the force developed by the engine to be transferred to the load. Usually the
force f2

will be directly proportional to the applied force f1.
Thus, we can write

f
2

= Aft or A = f2/f
1

where A is the constant of proportionality. In a practical windlass, A may be
as big as 50 or 100. The constant A depends on the number of degrees of arc
through which the line is in contact with the drum and on the friction between the
line and the drum. Thus, in principle, very small forces applied to the free end
of the rope may become very large forces at the load. There is, of course, a
limit to the force available at the load. This limit is imposed by the force and
power developed by the engine. The windlass, acts as an amplifier, because the
large quantity of power available from an engine can be controlled precisely with
a small amount of power applied at the free end of the rope. With a large number
of turns of rope around the drum, the frictional force may be very great, despite
an extremely small force at the free end. If we place too many turns on the drum,
the line grips the drum because of its own weight and stiffness without any input
force at all being applied. The frictional forces may cause the line to bind, or
adjacent turns may become entangled. Thus, with too many turns, the operator
loses control of the machine. (A means of obtaining greater values of power
amplification by using two or more amplifiers is described in Section C -2. 7
below. )

As with all amplifiers the function of the windlass is to control the energy
flow from the engine to the load. If we pull on the line with a constant force
then the rate at which we expand energy (called the input power) is

pl vl
and the rate at which energy is delivered to the load (called the output power) is

pz = va fz

By division, the last two equations yield:

P2 v2 f2

pl v
1
f

1
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but we have seen that v2 v1 ' therefore

P2 f2
= = A or p 2 = Api.

P1 il
Thus, the output power is A times as large as the input power and, as mentioned
above, A may be as great as 50 or 100. Moreover, the output power is at every
instant directly proportional to the input power applied by the operator. Thus,
the windlass has the effect of amplifying the power we apply by a factor of 50
or 100. With the help of this amplifier we can therefore exert a high degree of
control over the power delivered to the load. As shown by equation f, = Afi the
force applied to the load is at every instant directly proportional to the input
force we apply. Thus, the windlass is also a force transformer. This point of
view is useful when we are interested in the force applied to the load rather than
the sower delivered tothe load. As the input force is varied in time, the output
force varies in exactly the same manner but is A times as great. The constant
A often is called the power amplification factor of the device.

The windlass is just one of the many devices capable of producing power
amplification. Devices which permit a very small energy input, or signal, to
control the flow of a much larger output energy to some load. Another example.
of an amplifier is the electronic amplifier that is the basis of a record-player
system. This amplifier permits the very small power available from the pick-up
in the `tone arm to control very much greater power flow to the loudspeaker.
Other examples are discussed in the paragraphs that follow. At this point we
can review briefly the three features common to all amplifiers:

1. A source of energy that is separate from the input, or controlling,
signal.

2. Some type of control mechanism by means of which the input signal
controls the flow of energy from the energy source to the load.

3. A ratio of load power to controlling power that is greater than unity.

By the first and third criteria for an amplifier as stated above, it is evident
that a device such as the bumper jack is not an amplifier. We say that the
bun_)er jack acts as a force transformer or coupler, for the output force may
be much greater than the input force. However, the output power must be equal
to or less than the input power, since the bumper jack does not contain any separate
source of power. The hydraulic press, which. is used to shape metals, is a
similar device. It may be arranged so that the output force is greater than the
input force, or the output displacement is greater than the input displacement,
or the output velocity is greater than the input velocity, but for any of these
arrangements, the output and input powers are equal if frictional forces in the
oil and pistons are neglected.

On the other hand, the electric motor with its on-off switch does satisfy
all three criteria. It is a very crude amplifier, however, for the control
mechanism is a simple switch.
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The Hydraulic Amplifier

Another important amplifying device is pictured in Fig. C-2.I2.
Various forms of this hydraulic amplifier are used for power steering and
power brakes in automobiles. The source of power is a reservoir of oil, main-
tained under high pressure by a pump. The contr11 mechanism in the hydraulic
amplifier is a valve, as shown in Fig. C -2. 12. When the valve piston is in the

POWER
CYLINDER

POWER PISTON

VALVE CONTROL

611100
xin

HIGH - PRESSURE

OIL DRAIN TO PUMP OIL FROM PUMP Nk. OIL DRAIN TO PUMP
( ENERGY SOURCE)

LOAD

-ammr.A1110.

xout

VALVE PISTONS

Fig. C -2. 12 The basic hydraulic amplifier.

position shown, it blocks the flow of high-pressure oil, in either direction, and
the entire system is stationary. If the valve control moves the valve piston to
the right of its neutral position, high-pressure oil can flow from the valve
through the connecting tube to the left side of the power piston. The high-pres-
sure oil thus forces the power piston to move to the right. Oil on the right side
of the power piston flows back to the valve through the other connecting tube,
through the drain, to atmospheric pressure, and then it is forced back into the
high-pressure reservoir by the pump. The power piston continues to move to
the right until it closes the right -,xit port and oil can no longer circulate. If
the control valve is displaced to the left of the neutral position, movement in the
opposite direction takes place; high-pressure oil is admitted to the right side of
the power piston, and as the power piston moves to the left, oil on the left side
of the piston flows back to the valve and out through the drain.

The input power required to actuate the control valve in the hydraulic
amplifier is just the power required to overcome the friction associated with
the motion of the valve. This friction can be kept very small, and thus a very
small amount of input power can control the very large power made available
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through the power piston. However, the nature of the control that can be
exerted on the output is rather crude; it is the same as the control available
with the electric motor controlled by an on-off switch, and it is quite inferior
to the control provided by the windlass.

The performance of the hydraulic amplifier can be improved and made
comparable to the performance of the windlass by adding a feedback linkage,
as shown in Fig. C-2.13. When the input lever is displaced to the right, the
heavy load does not move immediately. The vertical bar pivots around point A,
and the valve moves to the right. Thus, high pressure oil enters the left side
of the power piston, the piston moves to the right, and oil is exhausted from
the right side of the piston through the valve and out of the drain, as before. But

POWER CYLINDER POWER PISTON

A

CONTROL
HANDLE.ten B

CONTROL
LEVER

LOAD

MINIMIII1111111.

XOUt

VALVE PISTONS

xv

HIGH-PRESSURE

OIL DRAIN TO PUMP OIL FROM PUMP SAIL DRAIN TO PUMP
( ENERGY SOURCE)

Fig. C-2.13 An improved form of the hydraulic amplifier with
feedback linkage.

if the position of the control handle is held fixed as the power piston moves; the vertical
bar will pivot around point B as the power piston moves to the right, and this
action pulls the control valve to the left to close the ports. Since this sequence of
events occurs almost instantly, we now have a system in which the load moves
back and forth in synchronism with the motion applied to the input lever. A
small amount of signal power applied to the input lever controls a very large
amount of power applied to the load. The source of the energy transferred to the
load is the engine which operates the oil pump. The greater the energy source
at the pump, the greater will be the energy delivered to the load.

To be an effective amplifier, not only must a large energy output be
available for a small energy input, but the energy output must vary in direct
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proportion to the input energy by a constant factor. Thus if the amplification
factor of the amplifier is twenty five, then whatever the energy we apply at the
input, the output will always be twenty five times as large. In the hydraulic
amplifier above, the force acting on the power cylinder is fixed by the pressure
of the oil pump and the area of the power piston. The energy delivered or work
done by the power piston can therefore vary only as a result of this fixed force
acting through a variable distance. If the output energy must be an enlarged
replica of the input energy the distance moved by the load x must be related
to the distance moved by the control xin by an unvarying or constant ratio. Under
such conditions, the large available force operates through a variation in dis-
tance which imitates precisely the input variation.

The relation between the motion of the input lever and the motion of the
load can be deduced by noting that under static conditions the valve must always
be closed. Thus, for static conditions we must always have xv = 0 in Fig.
C-2. 13. Then, it may be proven that

xout +
= Constant = C (Since and e remain

xin Q
1 fixed) 2

under static conditions. Multiplying the above equation by xin, we have

xout = C xin
Under dynamic conditions (i. e. when the system is in motion) the valve must
be displaced somewhat from the neutral position, and equation xt C xi does
not hold exactly. However, if the displacement of the valve is small compared
to the displacement of the input lever, the above equation is a useful approxima-
tion even when the sl.-.1tern is in motion.

This is the type of hydraulic amplifier that has been used, with various
modifications, in some power steering systems for automobiles. You may find
it interesting to analyze the action of this amplifier when the control valve is
connected to point B on the vertical bar and the input lever is connected to the
bottom of the bar.

In the case of the windlass there is a simple relationship between the
input and output forces, as given by equation f = Af . There is no such

2simple force relationship for the hydraulic amplifier1 , however. The input force
is the force required to overcome friction in moving the control valve. The
output force is the difference in oil pressure on the two sides of the power piston
multiplied by the area of the piston. No simple relation between these forces
normally exists, so that the calculation of the power amplification provided by the
hydraulic amplifier is usually difficult; however, experience does indicate that
the amplification can be made quite large.

The Electronic Amplifier

The electronic amplifier satisfies a great need in the man-made world
because, in constrast to the mechanical amplifiers discussed above, it is capable
of amplifying input controlling signals which fluctuate with great rapidity. If the
controlling signal is an electrical volt. Ye or an electrical current, amplification
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can proceed directly. For other signals, a transducer is used prior to
amplification in order to provide the electric signal which is necessary to
control the electronic amplifier.

By analogy to Fig. C-2. 6, the model of an electronic amplifier is shown
in Fig. C -2. 14. Notice that the external energy source is a battery (or an

iin
CONTROLLING

SIGNAL t ein
(INPUT) 0

FAI
ELECTRONIC
AMPLIFIER

lout

°out t R (LOAD)

Fig. C -2. 14 Model of an electronic amplifier.

electronic power supply), the control signal is a voltage or a current, and the
load is a resistor. (Recall from Figure B-3.4 that a resistor has the property
that if a battery is connected to it, an electric current will flow in inverse
proportion to the resistance in the circuit. ) The amplifier serves to control the
flow of electric energy from the battery or external energy source to the load
resistor.

Common electronic amplifiers are the vacuum-tube amplifier and the
transistor amplifier, and there are many others. The theory of all these
electronic devices has been worked out in considerable detail, and excellent
models are available for them. Unfortunately., however, it is not possible to
present a satisfactory explanation of these specific devices without devoting a
substantial amount of time to the study of electricity. Since the study of amplifica-
tion, and not electricity, is our present purpose, we can gain sufficient insight
into electronic amplification by resorting to experimental measurements made at
the input and output terminals of the amplifier. This is a technique frequently
used by engineers for complicated problems: rather than to try to understand
the device itself, we measure its significant properties or behavior at the input
and output of the device, and we use these measurements to devise a model il-
lustrating how the device works. These measurements are called the "charac-
teristics" of che device.

For example, let us suppose that a transistor amplifier is inside the
electronic amplifier block of Fig. C -2. 14. Measurements on a typical device
of this sort would result in the graph of Fig. C -2. 15 which shows how the output
load current Tout varies with changes in the input controlling current i.n, (The
nature of the transistor makes it impossible for either of these currents to be
negative; therefore, only positive values are shown on the graph. ) This curve
s called the input-output current characteristic of the transistor amplifier.

The curve in Fig. C-2.15 is clearly not linear; the curvature depends on
the type of transistor and on the range of currents used. However, for most
devices the curvature is not extreme for small range of variation and we can
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lout 1

(milliamperes)
4-

20 30 40 iin (microamperes)

Fig. C -a. 15 A typical relationship between output
current and input current in a transistor
amplifier (the inpu' output current
characteristic).

therefore assume an approximate model with a straight line characteristic. We
can then write

iout = A iin

where the current transformation factor A (usually spoken of as current gain) is
typically between 50 and 100, although it may be as high as 300 or 400 in some
transistors. Thus, the graph of Fig. C-2.15 and the approximation of the above
equation both show that the transistor amplifier produces current transformation.
But electrical power is a product of current and voltage. Is there power
amplification?

To answer this question we must, of course, consider the other component
of electric power: voltage. Let us turn our attention first to the relation between
input voltage and input current. In order to get some feeling for the magnitude
of the input voltage ein we obtain a second experimental curve, the input voltage-
current characteristic shown in Fig. C -2. 16. Here, the input current iin is

i in
(microamperes)

30

Fig. C-2.16 A typical relationship between the input
current and input voltage in a transistor
amplifier.
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shown related to ein. An inspection of the scale on the ein axis shows that
normally, the in tp1 voltage, when taken with the small value of the i.put cur-
rent it produces in normal operation, means that the input power is very small.

(Pin ine
1.

from p = e i)in

On the other hand, the voltage available at the load is directly proportional to the
current in the load (see Fig. B -3. 4); therefore, since iout pin,

much larger than
i., it is certainly possible to make pot (= e t) larger than p , through
dine selection of appropriate values of tIe loadourtes?stor R. As a numerical
example, we can examine a typical output current-voltage characteristic shown
in Fig. C-2.17. Here, the load resistance selected is 5000 ohms. If i.n =
.20 microamperes, then from Fig. C-2.16, ein = 0. 5 volt and, therefore

lout
(milliamperes)

4

3

2

I

0 5

R = 5000 ohms

10 15 20 eout(volts)

Fig. C -2. 17 A typical relationship between the output
current and output voltage at the load of
an electronic amplificer. (R = 5000 ohms)

in 20 micro-
amperes. Entering Fig. C-2.17 with this value of io

we find that eout = 15

' poutvolts and, therefore (15) (3 x 10-3) = 45 milliwatts. Hence,
out Pout is

4, 500 times as great as pin, showing that this device does indeed produce power
amplification:

The assumption that the lout vs iin curve is a straight line (i = A i.out
implies that the load-current variations will be a replica of the input-current
variations. In practice the io t-iin curve is slightly nonlinear, so that some
distortion is always found in the output-current v aveform. Much effort is de-
voted to designing electronic amplifiers to reduce this distortion to negligible
values. A so-called hi-fi amplifier, or high-fidelity amplifier, is merely an
amplifier in which distortion is reduced to a minimum so that the output is a
faithful copy of the input waveform. Thus, when a hi-fi amplifier is used in a
sound system, the output from the loudspeaker is a faithful copy of the sound
which has been recorded. One of the most important methods for reducing
distortion and obtaining fidelity in electronic amplifiers is the use of the feed-
back principle discussed in Chapter C-1. This application of feedback is used
extensively in radio and telephone systems, as well as in record players and
tape recorders.
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Distortion does not arise solely through a non-linear input-output
characteristic, however. Another source of distortion results from the finite
speed with which the output of the amplifier can respond to a change in the in-
put waveform. Although it has already been stated that one of the great
advantages of the electronic amplifier is its great speed of response when
compared with a mechanical or a hydraulic amplifier, phenomena that fluctuate
more rapidly than the electronic amplifier is capable of reproducing, willnotbe
reproduced faithfully.

The lack of instantaneous response in the transistor amplifier is illustrat-
ed by the two waveforms shown in Fig. C -2. 18 a and b. The first figure shows

in iout

(microamperes) (milliamperes)
20 2

10

0
(a) (b)

Fig. C -2. 18 (a) An input square wave applied to a transistor amplifier
may produce

(b) A distorted output waveform because of the finite speed
of response.

the input current jumping abruptly back and forth between two levels to provide
a square waveform of input current. In response to this input current, the load
current also jumps back and forth between two levels, but, as illustrated in
Fig. C-2. 18b, the output change does not take place as abruptly as the input
change. Because of the delay in the response of the amplifier, the output wave-
form is not an exact, and magnified copy of the input waveform. Distortion is
present. When a good, high-speed, low-power transistor is used in the amplifier,
the time required for the load current to make the transition from one level to
another may be less than 0. 1 microsecond. For many applications, this may be
considered to be instantaneous. When a transistor which is designed to control
large power is used, the time required for the transistion may be 100 times
longer that this. In comparison, the hydraulic amplifier has a response time
which may be 1000 times as long as that of the high-power transistor.

C-2. 7 MORE ABOUT MATCHING

Frequently we refer to a young couple as being well-matched, poorly-
matched, or even perfectly matched. It is generally accepted that the better
the match, the more compatible the couple will be, and the better will be some
result. A similar situation exists when a load is coupled to the output of a power
amplifier or when a control signal is coupled to the input of an amplifier. Trans-
formers of various types are used to couple devices so that they are better
matched to produce the effects for which they were designed. The bumper jack,
discussed in Section C-2, 3, is a good example of such a device. Coupling devices
are not power amplifiers since they have only an input and an output with no
provision for an external source of energy.
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Mechanical Transformers

If we return for a moment to,our discussion of the problem of lifting
the corner of an automobile we recall that the energy available to accomplish
this task could be developed by a man's muscles. But despite the availability
of the necessary energy an automobile jack was necessary to match or couple
the force exerted by the man to the force required to lift the corner of the auto-
mobile. In other terms, although the energy required is available, it must be
in a form to match the load characteristics. From the smaller force that could
be developed by the man through a fairly large distance, it is necessary to pro-
duce a large force which need act only through a small distance. In both cases,
the product of the force and the distance through which it acts - the energy - is
the same. Suppose that we wish to determine the best design for a jack so that a
man can lift the car with the minimum movement of his arm. From experience
we know that to raise the car a small amount we must move the jack handle up
and down many times. In other words, we exert our muscular force through a
large displacement in order to lift the heavy car through a small displacement.
This is a direct application of the principle illustrated in Fig. C-2. 2, that equal
areas may be found under many differently-shaped force-displacement curves.

The bumper jack can be modeled as a lever, which is a simple device for
balancing unequal weights or forces. Whenever we apply a force to a wheel to
make it turn, or use a wrench to tighten a nut, we apply the principle of the
lever. The key elements of a lever are a center of rotation, some resistance to
rotation, and a point at some distance from the center where a force can be applied
which tends to produce rotation to overcome the resistance. It is familiar
experience that the greater the distance from the center of rotation, the greater the
effectiveness of applied forces in overcoming the resistance to motion. For ex-
ample, a bigger wheel is easier to turn by hand than a small one of the same
mass; a longer wrench makes it easier to turn the nut. In other words, the
turning effectiveness, or torque,as it is termed technically, is proportional to the
distance for a given force. This principle can be formulated quantitatively as shown
in Fig. C-2.19. Here the lever consists of a long rod supported at a point called

fi

Fig. C-2.19 Model of the lever.
its fulcrum, or center of rotation. If we relate this model to the bumper jack,
resistance is provided by the force f2 due to the weight of the automobile and
rotation is attempted by the force exerted by the hand of the human operator at
point P and is easy to observe experimentally that if a relatively small force f1
is to be capable of lifting the car, the distant /1 must be greater than the distance
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.C. If the mass of the car is doubled as when trying to lift a Cadillac instead
or a foreign sports car, the point of application of force fi must be moved twice
as far from the fulcrum. Thus the torque, is proportinar to the distance from
the center of rotation. The same turning effectiveness for a mass twice the
original size can also be obtained by doubling the applied force and thus doubling
the torque. Thus torque is also proportional to applied force. Applied force
and distance are the only variables available. The torque, denoted by T, is de-
fined quantitatively by the equation

T = f1/1
where /1 is the distance from the point of force application to the fulcrum 0 and
f

1
is the force applied perpendicular to the bar (Fig. C -2. 19).

The direction of application of the force is very important. It is common
experience that in turning a body about a fixed axis, such as in loosening a bolt
as in Fig. C -2. 20, the given force produces a maximum effect when it is applied

Fig. C-2.20 Torques applied to a wrench.

perpendicular to a line from the axis to the point of application. In Fig. C-2.20
the force f

1
will be more effective than the force of equal magnitude f2. Force fl

produces a torque fidi, while force f2
produces the torque 1,d,. Since ch is

,

greater than de the torque f
1
d

1
represents greater turning effectiveness.

Note that torque has a direction as well as magnitude. Thus both f
1
d

1
and

f d 2
tend to turn the wrench in a clockwise direction. When applied to the wrench

tney are resisted by a torque applied to the wrench by the nut in a counterclock-
wise direction.

Returning to Fig. C-2.19, for the lever to be balanced, the torque ri.e1
must be equal to f2/2; that is

or
f1/1 = f2/2

/1
f2 = fl

Q2

Thus, a small force applied at a large distance from the fulcrum can develop a
large force nearer the fulcrum. To raise a weight at one end of the lever (for
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example, the car), we simply exert a downward force on the other end, and
unless /1 = /2' the upward displacement of the weight will differ from the down-
ward displacement of the end being pushed. Fig. C-2.19 illustrates how these
displacements x2 and x1, are related to /1 and /2 by

/2
X2 = X1

1

The distances are corresponding sides of similar triangles.

The last two equations indicate quantitatively (that is, in numbers) how a
bumper jack transforms or converts the force exerted on the jack bangle and its
associated displacement, into a force required to lift the car to a specific height.
With these equations we can now determine the best design for the jack. It is
clear from:

f2 =

that for a maximum force f2 the ratio /,// 2
must be made large enough to trans-

form fi into the force necessary to lift he car. Simultaneously, however, the
vertical. displacement of the car x2 depends on the inverse ratio / 1/f 2. If we
make the ratio /1 Le 2

too large, we will have to move the jack handle farther
and if we make this ratio too small we will not be able to lift the car at all.
The "perfect match" occurs when 2i/22 just transforms our maximum force to
equal the force necessary to lift the car. For example, if it takes a force of 2, 500
newtons to lift one corner of a car weighing 10, 000 newtons (the weight of a com-
pact car), then a jack designed with = 5 would serve as a good matching

adevice for a man who can only exert force of 500 newtons. Of course, since
most real bumper jacks are designed to be used by different individuals, they
will not develop a perfect match at all times. They are normally designed to be
useful for persons of below average muscular ability.

Notice that in lifting the car, the energy we expend is calculated from the
relation

Substituting

and

into this equation gives

w = fix'

/1
f = f

1 2

1
2

or f
1

=
1

f 2-1
2I121

x2 = xi 7 or x
1

= x2
I

w = f1x1

1(r )
2

2 1

f2 T ) 2 2T 2 2
2 2

Thus, all of the energy expended in pushing down on one end of the lever is equal
to the energy in raising the car at the other end of the lever. It is clear,

In an actual bumper jack, of course, f2x2 is always less than fixi because energy is
lost in friction between the rod and fulcrum and in the slight bending of the rod.
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therefore, that the lever is not a power amplifier: it has an input and output
but no source of external energy. Sometimes we are tempted to say that the
small f

1
has been "amplified" to the large f2, but this is incorrect because the

term amplification pertains only to power. The correct phraseology is: f has
been "transformed" to f2'

There are other types of transformers, all of which are capable of trans-
forming forces, As with the bumper jack, they are all used to match equal
energies so that the force provided by one is efficiently transferred (or coupled)
to the force required by the other. In all of these,the energy output is, of course,
always less than the energy input. Some are illustrated in Fig. C-2. 21.

INCLINED PLANE SCREW PULLEYS GEARS

Fig. C -2. 21 Mechanical force transformers or energy couplers.

The inclined plans, or wedge, is one of the first force transformers used
by man. When we are unable to exert a force W on a mass m2 to lift it vertical-
ly we can move it to the desired height by pushing it up an inclined plane with a
force f

1
whose magnitude is W his, where h is the height and s is the slant length

a the incline. W represents the weight of the mass m2. The equation with which
4,4.0
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shows the relationship between the applied force and the resisting force is:

f
1

the ratio his performs the same function as the ratio Ili/ 2 in

/1
f2 = f1 Q2

It provides a means for matching force capability to force requirement.

A screw is simply a wedge wound around a cylinder. Its transformation
factor is 1/ sin 0, where 0 is the angle its grooves make with the plane of the nut.

A pair of pulleys can also be used for force conversion. Here the force
f2* exerted by the gravitational force on the mass m2, is developed from a
smaller required lifting force f1 according to the formula

f2 = nfl

The transformation factor n, is equal to the number of ropes which support m2.

Gears represent another type of coupler used to match a power amplifier
to its load. We shift into "low gear" when going up a steep hill, and this per-
mits the engine to rotate through a number of revolutions for each revolution of
the wheels of the car. The car moves slowly but probably would not move at
all in any other gear position. On level reads shifting into high gear permits the
wheels of the car to rotate more rapidly for the same engine speed. Whenever
the force necessary to move the load increases, we must shift to a lower gear.
Some racing bicycles have as many as 9 gear ratios to match the various load
conditions. And, of course, our sports car has "four on the floor". The use
of gears for energy coupling is illustrated in Fig. C-2. 22.

ENGINE (AMPLIFIER)

GEARS (COUPLER)

LOW GEAR

WHEEL (LOAD)

SLOWER SPEED
GREATER TORQUE

ENGINE (AMPLIFIER)

GEARS (COUPLER)

WHEEL (LOAD)

HIGH GEAR

HIGHER SPEED
LOWER TORQUE

Fig. C-2. 22 The use of gears for energy coupling in an automobile.
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The Electrical Transformer

The concept of matching is also used in many electric circuits where
it is desired to obtain.the greatest transfer of power from an amplifier to a
load. A common example of this is the coupling of electrical power from the
amplifier to speakers in radio, television, and high fidelity equipment. Electrical
transformers are used for this purpose and their transformation properties can
be deduced from the principle that the power into a coupler is equal to the power
out of it. Thus, if we denote the inpute power as ell, and the outp...tt power as
e2i2; then if we assume ideal conditions with no losses in the transformer:

or

Power input = Power output

elil = e2 i
2

e2
el i2 =n

where n is a constant defining the two ratios, e2/ei or i,/i2. If n is larger than
unity the transformer is called a step-up transformer, since the output voltage is
larger than the input voltage. A step down transformer produces a smaller out-
put voltage than the input voltage. The above equation indicates that an electrical
transformer can transform voltage or current, subject to the condition that,
if voltage is increased, current must decrease, and vice versa.

The electrical transformer is essentially an arrangement as shown in
Fig. C-2. 23. Here a number of thin soft iron laminations are stacked to form

SOFT IRON
LAMINATIONS

POWER
SOURCE

[elid
PRIMARY
COIL

POWER [e212}
TO

LOAD

SECONDARY
COIL

Fig. C-2, 23 The electrical transformer
a core on which two coils are wound. The electrical power source is connected
to one of the coils, called the primary coil, while the load is connected to the
other coil called the secondary coil. It is interesting to note that the transforma-
tion ratio n is fixed by the ratio of the turns of the two coils. Thus if the secondary
coil contains three times as many turms as does the primary coil then

turns on secondary 3n = 17 = 3turns on primary
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With this transformer, power applied to the primary coil in which the voltage is
110 volts, will become, under ideal conditions, electrical power in the secondary
but with a voltage of .330 volts,, To compensate for this increase in voltage so
that the power input and the power output are equal, the current which will flow
to the load, will be one third of the current which flows into the primary coil
from the electrical source.

In summary, a transformer whether it is mechanical or electrical, trans-
mits power while changing the physical quantities which describes power Voltages
and currents are changed to suit the needs of a particular application, but their
product (power) is unaltered. Similarly, in a mechanical coupler velocity and
force are changed but their product (power) is fixed.

C-2. 8 CASCADING AMPLIFIERS

We have seen in Section C-2. 5 that the power delivered to the load of a
typical electronic amplifier is thousands of times greater than the input power
needed to control this flow of energy. Although this may seem like a considerable
amount of amplification, there are many applications for which it is not enough.
For example, the power produced by a radio wave in the antenna of a radio re-
ceiver is exceedingly small. In order to produce a suitable volume of sound
from the receiver's loudspeaker, it is necessary to amplify this power by a factor
of several million. This is far more amplification than can be provided by any
single electronic component.

In order to meet this need for large amplification, we may interconnect
two or more amplifiers in the manner shown in the block diagram of Fig. C-2. 24.

iin

in
AMPLIFIER

A1 = 50

AMPLIFIER

A2 = 50

jout=2500iin

Fig. C-2. 24 A cascade interconnection of amplifiers.

We call this a cascade interconnection and we refer to each of the amplifiers as
one stage of amplification. With this arrangement, the input control signal
current i. is transformed to a larger current by some amount (shown, for
example, as a factor of Al = 50 in Fig. C -2. 24) by the first stage of amplifica-
tion. The output current of the first stage then serves as the input signal current
for the second stage, where it is transformed by another factor of 50. Thus, the
overall current gain for the two stages is 50 x 50 = 2500. If this is not enough
gain, additional stages can be added in cascade. Typical amplifiers used in good
record-playing systems or small radio receivers have four or five stages cascad-
ed in this way.

This method of cascading stages to obtain large values of amplification
raises the question of whether any limit exists for the number of stages that
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may be connected in cascade. Experience indicates that a limit does exist, and
it results from the unavoidable noise that is introduced along with the signal at
the input or introduced by the amplifiers themselves. In addition to the noise
problem, the tendency of a multistage amplifier to become unstable or oscillate
is greater as the number of cascaded stage ;as increaced. Great care must' be
exercised in the design and construction of multistage amplifiers. This problem
of stability is discussed in the next chapter.

C-2. 9 NOISE IN AMPLIFIERS

In order to study the effect of noise on the limitations of the number of
stages that canbe cascaded, let us consider a public address system. These
systems use electronic amplifiers similar to those discussed above. With an
increase in the amplification in such systems, a faint sound at the microphone
will produce an audible sound from the loudspeakers. As we increase the amplifi-
cation, a point is reached at which the room noise begins to produce a noticeable
sound from the loudspeakers. If we increase the amplification further, we reach
a condition where the amplified noise becomes loud enough to mask the useful
sound coming from the loudspeakers. Thus, it is not useful to increase the
amplification beyond a certain value. This value depends on the amount of noise
in the room in which the microphone is placed.

In addition to the background noise discussed above, a similar effect
arises from another source whenever large amplification is sought. This is
the electrical noise, which arises from the fact that the atomic particles that
make up the wires, the resistors, and the transistors (or other electronic
components) of an amplifier, are in a constant state of agitated motion which is
dependent on their temperature. As a result of this motion there are very small
currents, present throughout the amplifier. The power associated with these
random currents in the wires at the input to the amplifier are amplified the same
as the power of the control signal. Indeed, the noise currents appear to the
amplifier to be the same as if they were control signal currents. If enough
amplifier stages are connected in cascade, the noise currents produce a large
signal at the output. These noise currents can be heard readily on any FM radio
receiver; they produce the s-h-h-h noise that is heard when the FM radio receiver
is not tuned to a station. (The noise heard on an AM radio receiver when it is
not tuned to a station is generally electrical noise generated in the Earth's atmosphere.)
Thus, all electronic amplifiers have a built-in electrical noise source that limits
the amount of useful amplification obtained by cascading stages.

There are many areas of scientific and engineering importance in which it is
essential to secure the greatest possible amplification. One example is the field
of radio astronomy in which it is desired to detect the very faintest radio signals
from extremely large distances in space. For such applications special low-
noise amplifiers are used for the first stages of amplification, often called the
front end of the cascade of amplifiers. Since electrical noise increases in direct
proportion to the temperature of the amplifier, the front ends are often immersed
in a bath of liquid helium which is at a temperature near absolute zero. At this
low temperature the electrical noise is reduced almost to zero.
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C-2.10 SUMMARY

In this chapter we have studied the methods man has developed to control
the flow of energy from the many sources available to him. In particular, we
developed the concept of amplification as the process of utilization of a small
amount of energy, supplied directly by a sensor to control the flow of a greater
amount of energy supplied by another energy source. An important objective of
this control process is the achievement of an output signal from the amplifying
device which is a replica of the input controlling signal.

In order to discuss amplification satisfactorily, we developed quantitative
descriptions of both mechanical and electric energy. With the observation that
the most interesting property of a force is the type of motion which it can produce,
mechanical energy was described in terms of the area under an f,x curve. We
developed the important concept that equal energies can be represented by many
different force-displacement situations (Fig. C-2. 2). Further analysis of
mechanical energy revealed that the rate of expenditure of energy, called power ,
is equal to the product of force times velocity, and that the total energy expended
during some time interval is simply the area under the p, t curve. The voltage
between any two points in an electrical circuit was described as the energy per
unit charge expended in moving an electrical charge from one of these points to the
other, and the electrical current was described as the measure of the amount of
electrical charge flowing through' a wire per second. We were then able to show
these quantities to be analogous, respectively, to force and velocity. By this
analogy, we developed the relationship for electric power to be p = ei.

With these tools in hand, the remainder of the chapter discussed
amplifiers and couplers and the distinctions between them. We defined a coupler
(or force transformer) as a device used to match an energy source to a load by
transforming an input force (or current or voltage) to match a required output
force (or current or voltage). We indicated that due to losses the power output
from these devices is always less than the power input, they cannot be termed
amplifiers. In the case of both mechanical and electrical couplers (or trans-
formers) we found that power was transmitted through these devices without any
power amplification. In an ideal electric coupler, e and i are changed to suit the
needs of a particular application but their product (power) does not increase.
Similarly, in a mechanical coupler, f and v are changed but their product (power)
does not increase.

Many different types of amplifiers were discussed, from the very simple
on-off variety to the more refined control of the windlass, the hydraulic, and
the electronic amplifiers. Distortions caused by the nonlinearities and response
times of these amplifiers were also discussed and the limitations that stability
and noise impose on the cascading of amplifiers were introduced.
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PROBLEMS

C -2. 1 Assume that the force needed to push an automobile up a slight incline
at a constant velocity is 1500 newtons.

(a) What energy is needed to push the car 30 meters along the slope?

(b) What is the average power required if the force is applied for
1 minute?

C -2. 2 The force required to stretch a spring in proportional to the displace-
ment of the free end. For a certain spring, f = 2000x.

(a) Sketch a curve of force versus displacement and find the work
required to extend the spring 8 cm.

(b) If 12.1 joules of work are done in stretching the spring, what
displacement would result?

C -2. 3 A constant force off newtons is applied to an automobile by its engine
(through the tires and the road).

(a) If the mass of the car is m kilograms, use the information of
Section B-3.4 to determine the acceleration, a.

(b) Sketch a curve of acceleration versus time and then determine
the velocity v1 at any time tl seconds after the force is applied.

(c) Sketch a curve of velocity versus time and also a curve of power
versus time.

(d) How much energy has been delivered to. the car when the velocity
is v1?

Eliminate t
1

from your result by using the relationship
between t

1
and vI found in (c) above.

(e) What is the numerical value of this energy for a 2000-kilogram
automobile having a velocity of 30 m/s?

C-2.4 (a) How much energy is needed to raise 70 kilograms 10 meters?

(b) How much energy could be obtained by allowing 10
5 kilograms of

water to fall 100 meters? If energy is valued at 1 cent per
kilowatt-hour, how much is this energy worth?

(c) How long would a 1-kilowatt pump have to run to empty a 1-meter
depth of water from a rectangular 10m by 15m basement if the water
must be lifted 3 meters to ground level? The density of water is
1000 kg/m3.
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C -2. 5 If a mass m is given an initial push and then allowed to coast freely
across a horizontal surface until frictional forces bring it to a stop,
the exponential curve shown below represents the frictional force
tending to slow it down as a function of displacement from the starting
point, x = 0. How much work is done in stopping the mass?

(WATTS)"
1500-

1000

500

0 i 6 12 18 24 t (HOURS)
(midnight) (noon) (midnight)

C -2. 6 A 12-volt automative electrical generator delivers a current of 4 amperes
to the headlights from 9:00 to 9:30 p.m., and a total current of 10
amperes to the headlights and radio from 9:30 to 10:00 p.m.

(a) How many units of charge are furnished by the generator in the first
half-hour?

(b) What is the total energy supplied by the generator during the 1-hour
interval?

(c) What power is delivered to the headlights?

(d) What power is delivered to the radio, assuming that the headlights
are just as bright with the radio on as they are with it off?

C-2. 7 The power used by a household during a certain day is shown in the
graph below. If the cost of electrical energy is 3 cents per kilowatt-
hour, how much did that day's electricity cost?
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C..2.8 A typical residential furnace is rated at 136, 000 Btu per hour. In mks
units this is 40 kilowatts. At the existing outdoor temperature, the house
loses heat by radiation at the rate of 15, 000 joules per second.

(a) For how many minutes in each hour should the furnace operate to
maintain a constant temperature?

(b) The temperature of the interior increases 1°C when there is a net
increase of heat energy of five million joules, how long should the
furnace operate to raise the house temperature 2°C?

(c) If the cooling rate is also 5 million joules for a 1°C drop, how long would
it take the house to cool down 2°C if the furnance were shut down?

(d) Assume that the interior temperature is 20°C at t = 0. Draw a
curve of temperature versus time if the temperature is maintained
between 20°C and 220C by on-off control of the furnace.

C -2. 9 A windless similar to that shown in Fig. C-2.11 is. used as a small
pile driver. A mass of 100 kg is lifted 5 meters and then dropped on
the pile to drive it into the ground. It is found by experimental
measurement that a force of 5 newtons pulling on the line causes a force
of 125 newtons to be applied to the lead. The weight of the line can be
neglected in this problem.

(a) Using the information given above, calculate the power amplification
factor of the windless.

(b) When the load has been lifted 5 meters, how much line has been
pulled in by the operator?

(c) How many joules of work have been done on the load?

(d) How many joules of work have been expended by the operator?

C-2.36
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C-2.10 A windlass similar to that shown in Fig. C-2.11 is used on a
cabin cruiser for lifting the anchor. It is to be designed so that a small
boy capable of pulling steadily with a force of 40 newtons can lift an
anchor having a mass of 25 kg. (The mass of the anchor line usually
can be neglected, except when anchoring in water, deeper than 10
meters. )

(a) Neglecting the mass of the line, what is the minimum amplification
factor that the windless can have and still meet the specifications
given above?

(b) Suppose that the windlass is designed to have an amplification
factor of 15 to give the boy "extra strength" for breaking the
anchor out of a mud bottom. If he raises the anchor 6 meters
from the bottom to the deck how much work is done on the 25-kg
anchor?

(c) How much work does the boy do in the process?

(d) If the anchor is raised with a constant velocity in 15 seconds, how
much power, in watts, does the boy deliver?

C-2.11 When the operator of a windlass pulls on the line with a constant force
of 20 newtons for one-half minute, it is found that a mass of 100 kg
can be lifted 1 meter in that time. What is the amplification factor of
the windlass?

C-2.12A hydraulic amplifier similar to that shown in Fig. C -2. 13 to be designed
so that xout = 3x. . If 2

= 10 cm, what is the required value of .11?
in

C-2.13 The mechanical linkage in the hydraulic amplifier of Fig. C-2.13 is
reconnected as shown in the figure below. The amplifier is initially
at rest with the valve closed. Then the input lever is given a small
displacement to the right, opening the valve slightly, and it is held
fixed with this small displacement from its original position. Describe
briefly the subsequent motion of the power piston and the valve.

Power Piston

C-2. 37

I LOAD,

xout



www.manaraa.com

C -2. 14 Two children have masses of 20 and 30 kg.

(a) If the smaller sits 3m from the fulcrum of a see-saw, where
should the larger seat himself?

(b) If the smaller child goes through a vertical excursion of 1.5m,
through what displacement will the larger one travel?

(c) Which child will move faster?

(d) Which child will be subjected to the greater acceleration?

(c) Who has all the fun?

C-2.15 Why is the platform arrangement for a mass balance shown in (a)
below superior to that shown in (b)?

MOIMD =MIND MM.

A

FLEXIBLE,-4/
CHAIN

(a) (b)

C-2.16 A meter stick is placed on a fulcrum at the 50-cm mark. Masses of
500gm and 200gm are located at the 20-cm and 90-cm marks,
respectively. Where should a 300-gm mass be placed to achieve
balance?

C-2. 17 (a) How much force is required to pull an 80-kg skier up a slope for
which his = 4., if friction between the skis and the snow if
neglected?

(b) What is the length of the slope in Fig. C -2. 21 along which this
force must be applied?

(c) If the trip requires 5 minutes, what average power in kilowatts
is required to pull 10 skiers up the slope simultaneously?

(d) How much power would be required to lift the same 10 skiers
the same 500-m distance vertically in the same time?

C-2.18 (a) Make a sketch showing how a rope may be used with two pulleys
in order that a man can raise an engine having a mass of 200kg
by exerting a force of about 400 newtons.

(b) If the man lifts the engine 1 meter in 15 seconds, with what
average velocity is he pulling the rope?

(c) What average power does apply to the rope?

C-2. 38
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C-2.I9 The gears shown in the figure below have the following numbers
of teeth: A, 10; B, 50; C, 10; D, 80. Gears B and C are mounted on
the same shaft and turn at the same angular velocity. Gear D and
the smooth drum also turn at the same angular velocity. The drum
has a diameter of 20 cm.

(a) If mass m is to be raised with a constant velocity of 0.314 m/s,
determine the direction of rotation and the angular velocity of
each gear and the drum.

(b) If m represents a compact car of 2000-kg mass, what power
must be delivered to gear A?

C -2. 20 An electrical transformer has an input voltage of 2300 volts, an
output voltage of 115 volts, and an input power of 10,000 watts. Find
the output power, output current, and input current. (assume no losses)

C -2. 21 Electrical transformers are available having voltage ratios of two-to-
one and six-to-one. In an emergency, how might these transformers
be used to deliver 40 volts to a motor from a 120-volt source?

C -2. 22 The electronic amplifier of Fig. C-2. 14 has the characteristic shown
in Fig. C-2.15 for iout versus iin'
(a) What is the approximate value of the current transformation factor

A when iout = 2 milliamperes?

(b) Under certain operating conditions the input current to the
amplifier is lin = 20 + 10 sin 100t microamperes. Assuming that

equation: io t= Aiin holds with the value of A found in (a), what is the
expression Yor lout?

C -2. 23 A high-power transistor with a current transformer factor A = 100
is used in the electronic amplifier of Fig. C -2. 14 with R = 500 ohms
and lin = 20 miliamperes. (use the graphs in Fig. C -2. 17).

C-2.39
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(a) Calculate the load current iout.

(b) Calculate the voltage across the load R.

(c) Calculate the power delivered to the load R.

(d) If the input signal current has the waveform shown below, draw
a graph showing the waveform of the load current Tout' (Assume
that the load current changes abruptly when the input current
changes. ) Show the maximum and minimum values of i 4. onout.this graph.

im
( MILLIAMPERES)

30

20

IO

3 4 t (MILLISECONDS)

C -2. 24 A signal current of 0.5 microamperes must be transformed to a value
of at least 30 milliamperes. If a current gain of 50 can be obtained
from each stage of amplification, how many stages must be inter-
connected in cascade to achieve the desired result?

C -2. 25 Show why the systems described below do or do not satisfy the three
criteria of an amplifier. In each case you should identify the
controlling signal, the energy source, and the power output to the load.

(a) A miner using a large hose to wash away the bank of a river;

(b) A gardener using a wheelbarrow to move a pile of topsoil 58 feet;

(c) A transistor radio;

(d) A tube;

(e) A photoelectric device used to turn street lights on at dusk and
off at dawn;

(f) A public-address system;

(g) Power brakes;

(h) A man speaking into a telephone in New York that is connected
to another person in California.

C-2.40
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C-2.26 The motor in a certain vacuum cleaner is rated at 690 watts. This
is the power that it requires from the household electric system.
When it is operating, frictional losses in the motor and fan bearings
involve 40 watts, 80w are used to move the air inside the casing of the
motor, 150w are lost in heating the wires of the motor because of the
resistance, 80w are converted to heat in the magnetic materials of the
motor, and 50w are spent in heating the fan blades. The remaining power
is delivered to the air by the fan. However, half of this power is lost in
heating the air as its pressure is increases.

(a) How much power is effectively used to provide the "vacuum"?

(b) If the efficiency is defined as the useful power output divided by
the total power input, find the efficiency of fan and motor system.

(c) If the force required to operate the switch is 1 newton and the
switch moves 1 cm, what energy is required to turn the machine
on? to turn it off?

(d) In use, assume that the cleaner is turned on for 5 minutes and
then off for 25 minutes to answer the telephone, and that this
pattern is repeated for 2 hours. The movement of the machine
across the floor requires a mechanical energy input from the
operator of 25 w. What is the average power used to control the
machine for 5 minutes of operation?

(e) What is the power amplification?

(f) Sketch curves of useful power output and average power input
versus time.
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Chapter C-3

STABILITY

C-3. 1 INTRODUCTION

In designing systems that help us cope with the world in which we live,
we usually have in mind some desired operating state or condition. This desired
state may be very simple; we may wish to place a book on a table so that it re-
mains stationary. Or the desired state may be quite complicated; we may wish
to place an astronaut into a precisely calculated orbit.

Sometimes, the specification of the operating state may be easy; we want
the book to remain in a fixed and unchanging position. At other times the specifi-
cation ofthe operating state may be difficult; we must compute the astronaut's
precise orbit with the aid of higher mathematics and the use of high-speed digital
computers. But whether the specification of the operating state is simple or com-
plex, the design must involve additional information. We must know if the operat-
ing state toward which we design is stable or unstable. An unstable design may
produce disastrous effects. A man in a satellite sent into an unstable orbit would
invite catastrophe.

The idea of stability is deeply rooted in the popular language. We talk of
a political leader who does not maintain his equilibrium is unstable. His behavior
is unpredictable and erratic. The man who is a good provider and whose behavior
is as "stable as the Rock of Gibralter" is looked upon favorably by his neighbors.
In this chapter we shall go beyond popular usage and probe into the concept of
stability. We shall find that unstable and stable systems differ in behavior if a
disturbance is applied to them when they are in a state of equilibrium. In many
systems we can deal with the phenomenon of stability in a quantitative manner by
applying our old friends: modeling and analysis techniques. This offers great
advantage for we can then determine quantitatively when a system changes from a
stable to an unstable state.

A phenomenon which is useless under one set of conditions may often prove
useful in another context. Instability is this type of phenomenon. We shall give
some examples where man has exploited instability for good use.

C-3. 2 SKYSCRAPERS BEGET SKYSCRAPERS

Consider the adage, "skyscrapers beget skyscrapers, " What does this
mean? Until the beginning of this century, office buildings were generally a few
stories in height, (often only three or four stories). The advantage of a tall build-
ing is that one could centralize many operations. Workers could reside near their
place of business, thus cutting down transportation costs. With taller buildings,
land could be used much more efficiently. Buildings such as the Empire State
Building with more than 100 stories in height occupy only about 1/100 the land
needed to house all of its tenants if they were to be arranged on a single floor.

C-3.1,
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Some disadvantages, however, are associated with increased vertical
construction. As a building is made taller, the foundations must be made stur-
dier to support the added weight of the additional stories. With the all-masonry
buildings that existed to the end of the last century, gigantic foundations were
required for tall buildings. More important., elevators were non-existent.
People simply would not or could not walk up more than a few flights of stairs.

A natural competitive operating state of equilibrium existed. Every
office building owner realized approximately the same profit, and all office
buildings in a large city were generally about the same in height. The profit
equilibrium was stable. Any attempt to disturb this equilibrium with the con-
struction of a taller building proved wasteful since no one would walk up many
flights of stairs. This would mean that the income necessary to pay for the
additional cost of the foundations could not be realized. A building of fewer than
the customary stories would not, of course, realize the income of the buildings
of the normal height.

But toward the end of the century two changes occured. First, the cheap
fabrication of steel beams made possible tall, light-steel frame buildings. Sec-
ondly, Mr. Otis invented the elevator and electrical motors became available
for their operation. Despite these inventions, the equilibrium state for three or
four story buildings could have continued to exist. The new inventions could
simply be ignored. But such equilibrium was now obviously unstable.

The first skyscraper brought its owner large profits from a small plot of
land. This produced an increase in the value of the land on which the skyscraper
was built. Owners of vacant land were no longer willing to sell at the price that
prevailed when buildings were only a few stories in height. They could wait for
a skyscraper builder who would be willing to pay more for the same plot because
his building would realize a larger return for his investment. With increasing
land prices, only a skyscraper would be profitable and each new skyscraper
created pressures for succeeding office building to be skyscrapers. Each sky-
scraper encouraged new, and for a time, higher skyscrapers. In New York, for
example, the instability was especially severe and in addition the bedrock of
Manhattan made skyscraper building easy. Recently, in cities such as London,
where the foundation conditions for tall buildings are much less favorable than in
New York, the "skyscraper begetting skyscraper" effect has become quite notice-
able.

This simple example illustrates several characteristic features associated
with the stability or the instability of a system.

(1) In a stable system, a disturbance which moves the
system operating state will evoke forces that tend
to return the system to the operating state.

(2) In an unstable system, a disturbance will evoke forces
that tend to drive the system even further from the
operating state.

Before the invention of the elevator and the availability of cheap steel
beams, tall buildings were thus impractical. Latex, buildings taller than a few

C-3. 2
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stories created pressures for yet taller buildings. A "snowballing" effect occurs
which is typical of instability. This effect is readily observed when a snowball
rolls down hill; each new layer adds more snow to the ball.

We shall meet the above characteristics; the tendency of a stable system
to restore itself and the tendency of an unstable system to "snowball" away from the
equilibrium or operating state again and again. A knowledge of these character-
istics is essential for the control and creation of many systems in the man-made
world. Although a qualitative appreciation of these characteristics is sufficient
in many instances, in others we prefer a quantitative mastery; a knowledge of the
numerical values of the quantities that may change the system from a stable to an
unstable state. We shall apply modeling and analysis to some examples in order
to illustrate the method of approach to such problems.

C -3.3 EPIDEMICS

Some years ago a person suffering from smallpox was accidently permitted
to enter the United States. To prevent the outbreak of an epidemic, an immediate
search was instituted to locate all persons that had been in contact with this indi-
vidual since his arrival. The possibility of a rapid spread of the disease from a
limited initial beginning was well understood. This need to quarantine or isolate
infected individuals to prevent widespread infection is really a process for pre-
venting an unstable situation to develop from an initial disturbance. The single
infection acts as a disturbance of the entire community which is originally in
equilibrium. The city of Aberdeen in Scotland, for example, was affected by a
typhoid fever epidemic in 1964. Strict measures were taken to quarantine the entire
city to prevent a further spread of the disease.

This suggests that an epidemic has the mark of an instability phenomenon,
with its sudden and abrupt change from one state to another precipitated by a dis-
turbance. In the smallpox case, the disturbance was a single infected persoin. In
the typhoid fever case, the initial disturbance was traced to an imported shipment
of tainted fish carrying the typhoid fever germ. Indeed, for a number of yea;rs
public health officials have developed mathematical models of epidemics. They
hope to obtain deeper insight into the epidemic mechanism. Given the fact that
many people, in a community, are immune to smallpox by virtue of vaccination,
what would happen if a single infected person were to appear? He may infect some
of the others. But if these in turn come in contact only with immune persons, no
epidemic will develop. On the other hand, if each of these infected persons infects
three or four others the epidemic will grow exponentially. Another factor is re-
lated to the fact that people who recover become immune. If they recover quickly
enough, they may not infect enough additional people to expand the epidemic. How
important are these various factors relative to one another in the growth of an
epidemic? Should the public health officials concentrate their resources on quar-
antine or on vaccination? Such are the questions that one wishes to answer with
the help of a model. In many situations definitive answers are difficult to secure
because the phenomena are complex and influenced by unpredictable events.
Nevertheless, the insights that the models have provided have been useful and
have spurred further research.

We will consider the simplest models of an epidemic. Let us first analyze

C-3. 3
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the following, somewhat artificial, situation. We assume that in a total popula-
tion of N persons, everyone is either infected with a certain disease or is sus-
ceptible to catching the disease from those who have been infected. This model
thus omits the possibility of individual recovery and subsequent immunity, death,
or isolation. This is an oversimplification for most diseases, although for cer-
tain mild upper respiratory infections with a long period of infection, the model
does have validity.

We denote the number of infected persons by i and the number of suscep-
tible persons by a. We are interested in the rate of increase in i, that is how
many new people will become infected each day. Let us denote the rate at which
new people become infected by R.. We expect this rate to depend on the number
of persons that are already infected. The greater this number, the greater the
probability that they will transfer the infection to others. But we can also ex-
pect that the number of newly infected persons on any day will depend on the
number who are susceptible. Again, the greater the number of susceptible
persons, the greater the number of people who will be infected.

Hence a reasonable model should have the number of newly infected in-
creasing both with the number of presently infected, i, and the number who are
susceptible, s. But what is the precise form of this dependence? We could, for
example, assume that a certain fraction (1%) of the infected and 2% of the sus-
ceptible, will produce newly infected persons each day. Symbolically, the number
of newly infected each day, or the rate of infection could then be represented by the

equation:

R. = 0. Oli + 0. 02s.
1

But would such an assumption make sense? Suppose we have no infected, so that

i 0 and s = N (the total population). Our proposed equation would lead to

R. + 02s = 0. 02N
1

or 2% of the total population would predictably develop the disease despite the
complete absence of carriers. Then again, suppose, everyone is already infected
so that no additional people are susceptible. The proposed equation would predict:

R. = 0. Oli = O. 01N
1

We would predict still more people coming down with the disease although there
are none that can be infected: Clearly, the proposed equation or model of the
epidemic is not realistic.

Let us try another line of approach. Let us assume that the number of
newly infected per day will be some fraction of the product of the number of in-
fected and the number of susceptible. Let us assume that the fraction is 1%, then
the number of newly infected each day would be:

R. = 0. Olis
1

This equation or model is free of the objections of the initial model. If there are
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no infected persons in the population (i = 0), there will be no newly infected. Like-
wise, if there are no susceptible (s = 0), there will be no newly infected. We may
assume that the population consists only of infected or susceptible people so that
N = i + s. Our new model of an epidemic is in fact generally used, although it is
a very crude mathematical model. With this model we can now study the spread
of the contagious disease and predict the nature of the epidemic.

It is possible to represent this model using the scalor, adder, multiplier,
and integrator operations discussed in earlier chapters. One formulation suit-
able for solution with an analog computer is shown in Fig. C-3.1.

MULTIPLIER

SCALOR

Li

si SCALOR
.01

R i INTEGRATOR i

fd t

Fig. C-3. 1 - Block diagram of Epidemic model.

This block diagram appears rather formidable at first glance, but we can
grasp its meaning with a step by step examination of its structure. We should
remember that we are searching for the day by day value of the number of infected
persons, so that we can predict the growth of the epidemic and discover whether
the turning point in its development will occur before conditions in the community
become dangerous.

If the total population is N and the number of persons who have already
been infected is i, then the number of people who remain to be infected is (N-i)
or N + (-i). This represents the number of people who are susceptible, according
to our model.

s = N + (-i)

Since the value of i (the number of infected people on any day) is exactly
what the analogue computer will produce at its output, we loop the output back to a
multiplier so that it is multiplied by (-1). The result (-1) (i) = (-i) is then combined
with the value N (at the adder) to produce a numerical value for the number of people
s who are susceptible to the disease.

Our mathematical model for the epidemic R. = . Olsi informs us that the
rate of increase involves the product of s with i and' the factor (. 01). We the

tsp the line which supplies the value of i to the scalor (-1) and feed this value
into a multiplier along with the value s. This output from the multiplier repre-
sents the product si. Multiplication in the scalor unit by . 01 produces the output
Olsi = R..

1

C-3. 5
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The factor R. is the daily rate of increase in the number of infected cases.
If we send this information into an integrator, we can sum up the total number of
newly infected cases after any period of time. This is the factor i which we seek.

Ifiwe attach a meter to the output of the integrator and read it at intervals,
of time, 'we can graph a curve which simulates the course of the epidemic.

We can also solve a numerical problem to illustrate how the epidemic will
develop b-Y performing calculations very similar to those we applied in chapter
C-1 to finp. the output of an integrator with feedback. Comparison of Fig. C-3. 1
with Fig. iC-1. 18, will reveal that the models are indeed rather similar. We can
apply the 6arne procedure of "inching" along in time, using the present number of
infected people, i, to determine the rate, R. at which the number of infected is
increasing. Then, by multiplying R. by the small time interval, At, we can esti-
mate the increase Ai in the number of infected occuring during that time interval.
By adding Ai to i, the number of infected at the end of the time interval is found.
This calculation is then repeated over and over at successive instants of time.

Let us illustrate this procedure by considering a total population of
N = 100, and using a. time interval of one day for At. We shall assume that one
person is infected on the first day, so that initially:

A) Let N = 100
Let A t = 1
Let t = 1
Let i = 1

B) Let s = N - i
Let R. = (. 01) (si)
Let A i = (i Ri) (A t)

C) Let new i = old i +
Let new t = old t + At
to be used for computation of the next

day's changes.

We can set up these computations in tabular form

.R.= Olsi
Day i s = 100 -i si = R. (At) = R. (1)

1 1 99 99 0. 99 cd1

where we have rounded the 0. 99 value for Ai to the nearest integer to obtain the
number of newly infected. Then, on the second day, t,ne number of infected
(new i) will be the number from the first day (old i) plus the newly infected (Ai)
or 1 + 1 = 2. Hence, on the second day, we repeat the calculation to get:

C-3. 6
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Day i s = 100 - i si Ri = . -Olsi Ai = Ri( At) = R.1(1)

2 2 98 196 1. 96 2

Then, at the beginning of the third day, the number of infected persons would be
the sum of i and Ai, or 4 infected persons. A continuation of this calculation
gives the entire course of the epidemic as shown in Tabe C -3. 1.

TABLE C -3. 1 EPIDEMIC CALCULATION

Day i s = 100 - i si i RATE = . Olsi Ai = (Ri) (1)

1 1 99 99 0. 99 1

2 2 98 196 1. 96 2

3 4 96 384 3. 84 4

4 8 92 736 7. 36 7

5 15 85 1275 12. 75 13

6 28 72 2016 20. 16 20

7 48 52 2496 24. 96 25

8 73 27 1971 19.71 20

9 93 7 651 6. 51 7

10 100 0

Figure C-3. 2 shows the epidemic of Table C-3. 1 in graphical form.
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Fig. C -3. 2 - Plot of simple model epidemic given in Table C -3. 1.
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The desirable state of a population is, of course, one in which no disease
exists. We see from Table C-3. 1 or Fig. C-3. 2 that, according to our model,
this desired state is unstable. A disturbance in the form of one infected person
sets off a chain reaction which increases the movement away from the stable
condition. In our example, this movement from the initial stable ;onditions con-
tinues until the 7th and 8th days, after which the rate at which people become in-
fected begins to decrease as the entire population becomes infected.

Although the above model is a useful introduction, it is too simple to be
realistic except under special circumstances. A more realistic model takes into
account the fact that people also recover and become immune, or die, or can be
isolated or leave the area. Thus the total population contains at any instant some
number r of "recovered"people. This number r changes with time at some rate,
Rr. The simplest assumption is that in a single day a certain fraction of those
infected will be withdrawn from the ranks of those afflicted because of recovery,
death, etc. For instance, if this fraction were 0. 1, we would have:

Rate of recovery = number recovered/day = Rr = (0. 1) i (C-3. 3)

where we have used the term "recovered" to include all the effects mentioned:
death, recovery, and insulation.

The total population, N, now consists of those who are infected, those who
are recovered, and those who are susceptible.

N=i+r+s
As more people recover, they decrease the number of infected and increase the
number of recovered. Thus, the net change Ai in the number of infected occur-
ing in a time interval At is given by the newly infected minus the newly recovered,

Rr At - Rr At

and the change in the recovered is:

Ar = Rr At

(C-3. 4)

(C-3. 5)

Let us next modify the equations used previously. We must now specify
that initially there are no recovered persons Also to keep the calculations to
reasonable length, let us assume that we initially have 50 susceptibles and one
infected person in the population.

Then,

A) Let N = 51
Let A t = 1
Let t = 1
Let i = 1
Let r 0

C-3. 8
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B) Lets=N-i-r
Let (.R. = . 01) (si)
Let Rr = (0. 1) i

tLetAi= R. A - R At
1 r

Let A r Rr At

C) Let new i = old I + Ai
Let new r = old r + Ar
Let new t= old t + A t

Again this information permits us to repeat our computation for a point
by point analysis. As before, we arrange the calculations in tabular form

R. Rr Ai
1 1 50 0 1 0 1 0

Ar

During the first day, the increase in infections will be 1, there will be a
decrease in the susceptible persons of 1, and no further recoveries or deaths.
Note that we have rounded off 0. Olis and 0. li to the nearest integer. This con-
vention will be followed in the subsequent calculations, which are given in Table
C -3 2.

Plots of i and s versus days are shown in Fig. C-3. 3.

If the desired state is a disease-free population, then, in accordance with
this refined model, such a state is unstable. One infected person will trigger a
",snowballing" away from the desired state. But our model predicts that not all
of the susceptible people will develop the disease. Two of the susceptible persons
will avoid infection to the 19th day of the epidemic, subsequent to which no further
change will occur (see Table C-3. 2).

We know that the introduction of a single infected person into a population
need not necessarily trigger an epidemic. Does our model reveal this possibil-
ity? What does our model predict about the conditions under which an epidemic
will occur?

To explore these questions we return to Equations 3.4 (Ai = Ri At - Rr At)
and Equation C-3. 5 (Ar R At). We permit fi to represent the fraction of the
product, (si) that become infected in a single day and fr the fraction of infected
persons who recover in a single day. We then write the equations of the model
in the form:

(C-3. 6)

(C-3. 7)

Change in recovered, Ar = fri At

siin infections, = (Ls - f i) At = (f. s - f) i Atr 1 r
where we have factored out the term i in Equation (C-3. 7).

C-3. 9
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We note that the sign of the right-hand side of Equation C-3. 6 is always
positive. This indicates that the number of persons who have recovered will al-
ways increase, and, as a consequence, the number of persons who are as yet sus-
ceptible, will always decrease. This also reflects the assumption of our model
that all who recover do not again become susceptible. On the other hand, the sign
of the second equation, C-3. 7, varies with the sign of the term in parenthesis,
(f.s f ).

1 r
If the number of susceptible persons in the population is large enough

(f.s f ) will be pos'tive, and an increase in the number of infected persons will
result;rhowever, if the number of susceptibles is sn all, the quantity (f.s - fr)
will be negative; and an epidemic will not be initiated by the addition oflanother
infected person.

According to our model, the borderline between instability and stability,
that is, the condition which separates the epidemic from the non epidemic re-
sponse to an infection is that in which:

f. s - f = 0
i cr r (C-3. 8)

where we have denoted the critical number of susceptibles by sFor a large
innumber of susceptible people, the rate at which people become infected will be

greater than the rate at which people recover and become immune or die. If the
number of susceptible people is sufficiently small, the rate at which people re-
cover or die will exceed the rate at which they become infected, so that no epi-
demic will occur. Solving for scr:

s
fr

cr f.
1

(C-3. 9)

which gives an explicit relationship for the critical number of susceptibles in
terms of the factors fi and f . In the above example, f. = 0. 01, f = 0. 1 and
therefore, by Equation C-3J9 s = 10, and an epidemiC developed. However,
if we make f. = 0. 01, but f = Oc. g, so that s = 0. 6/0. 01 = 60. With an initial
value of s = we can compute the outcome oirthis condition in terms of the fol-
lowing table:

s r f i.s

1
f ir Ai Or

1 50 0 1 1 0 1

1 49 1 0 1 -1 1

0 49 2 0 0 0 0

no epidemic would result.

We note from Equation C-3. 7 that our model has a self-limiting property.
Suppose s initially exceeds s . As i increases initially, s will necessarily de-
crease. The magnitude of thcerfactor (f.s - f ) becomes negative, after which the
number of infected will begin to decrease. TY this occurs with sufficient speed
only a small proportion of those susceptible to the disease will become infected.
In the numerical example, Table C-3. 2, however, conditions were such that
nearly all susceptible persons were afflicted.

C-3. 10
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TABLE C-3. 2 IMPROVED EPIDEMIC CALCULATION

s

1 50

2 49

3 48

4 47

6 45

8 42

10 39

13 35

17 30

20 25

23 20

26 15

27 11

27 8

26 6

24 5

23 4

22 3

21 2

19 2
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Equation C-3. 9 for the critical number of susceptibles quantitatively relates
three factors that we know play important roles in the development of an epidemic.
Reduction in the number of susceptibles s, to a value less than the critical value
will prevent the growth of an epidemic. This often suggests '-he need for vaccina-
tion and immunization. In some South American countries, for example, the
malaria-preventive drug, atabrine, is added to the table salt in small quantities.
Although not everyone uses table salt, and different people use it in different
amounts, it is hoped that enough immunity will be given to reduce s below the
critical value. The rate at which the susceptible become infected, represented
by the factor fi, can be kept down by keeping susceptible persons away from con-
tact with the infected ones through quarantine and isolation. Finally the rate at
which people recover, fr, is as seen by Equation C-3. 9 also to be important. We
can expect to find that diseases which are contagious for long periods are more
difficult to control than those with short contagious periods.

Mention should be made that we have considered the so-called deterministic
models of epidemics in this section. In more refined models, the laws of chance
are included. One considers, for example, various probabilities that an infected
person will come in contact with another who is susceptible. Although such models
are more realistic than those we have studied, they require the use of mathematics
which is beyond the scope of our course.

C-3. 4 LAW OF SUPPLY AND DEMAND

It is a commonly accepted truism that the " supply always adjusts to meet
the demand." For example, when medical evidence recently indicated that it was
healthy to be slim, demand for weight reduction drugs increased. In response
to this demand, the drug manufacturers increased the supply of such drugs.

The "law of supply and demand" clearly involves the concept of a static
operating state. In the example of the weight reduction drug, we may imagine
the existence of a number of "demanders" who consume the drug at the same rate
at which it is supplied by the manufacturers. If for some reason the demand of
the drug were to decrease, we believe that the supply will also decrease until a
new equilibrium state is reached.

But as we have already seen, it is also necessary to know about the stability
of the operating state. In economic systems, as in all other situations involving
people, this is a very complex question and it is influenced by many factors.
Complicated mathematical models have been devised to deal with problems such
as the supply-demand drug example which we considered above. For simplicity
of treatment, we shall focus attention on a small economic system consisting of

a single supplier and a single buyer.

Imagine the following situation. Mr. I. M. Crafty is a toy manufacturer.
Mr. Crafty makes one toy and his principal outlet is Discount Stores, Inc., a
chain that depends on high-volume sales. To cut costs, Discount Stores stocks
as little as possible in warehouses, where rental and deterioration add to expense.
Discount's policy is to place orders every Tuesday for an amount that can be sold
in a single week. Their estimate of the weekly sales volume is based on the cur-
rent price quoted by the manufacturers.

C-3. 13



www.manaraa.com

Mr. Crafty on the other hand sets his price on the basis of the most recent
order from Discount stores. Every Wednesday he sends letters to his customers
announcing the new price.

What will happen? There is obviously a possible operating state where Dis-
count orders the same amount Tuesday after Tuesday and Mr. Crafty sets the
same price Wednesday after Wednesday; but will this operating state remain
stable?

Suppose Discount decreases its toy order. Mr. Crafty may increase his
price in an attempt to maintain his total profit. Discount may then feel that it
cannot sell as many toys at the higher price and may further decrease its pur-
chase order. On the other hand, Discount may place an even larger order than
before to take advantage of the high-volume price discount. Mr. Crafty could
then increase his price since that his toy is now in greater demand, which may
result in a cut in the size of the order. Clearly the situation is not simple; a
multitude of possibilities exist.

How can we apply modeling and analysis to gein an insight into this compli-
cated affair?

We can first try to model Discount's strategy of buying. Probably Discount
will buy a greater amount at the lower price set by Crafty. If we plot price ver-
sus the amount that Discount will buy, the simplest curve of this sort would be a
straight line as shown in Fig. C -3. 4 where for a given price, P, Discount will
buy amount A.

Let us now examine and model one of Mr. Crafty's possible selling strategies.
Recognizing that Discount Stores has increased its purchases because his price to
them is low enough for gaining a good profit on the resale of the toys, Crafty may
attempt to induce a larger sale to Discount by a further reduction in price. The
larger his sales to Discount, the larger the profit he hopes to earn. A simple
straight line model of this strategy is displayed in Fig. C-3. 5.

On the basis of our straight-line models of Crafty's "supply policy" and Dis-
count's "demand policy, "what will happen? When will equilibrium of supply and
demand occur? We can easily find this and also analyze for stability graphically.
In Fig. C-3. 6 we have plotted both Crafty's selling strategy, labeled C, and Dis-
count's buying strategy, labeled D. Equilibrium will occur at the intersection
point A, P. At this price, P , Crafty will be willing to supply amount, A , week
after week, and Discount is willing to buy this amount at the stated price. eFor a
smaller purchase Crafty will insist on a higher price. Discount will also expect
to pay a higher price for a lower amount, but not necessarily the price Crafty ex-
pects. Likewise for an amount greater than A, Crafty's and Discount's expecta-
tions differ. Only for an amount Ae are they boeth in agreement on the price?

Suppose now that equilibrium Ae, Pe is disturbed. Perhaps a fire in the toy
department of one of Discount's stores compals them to reduce their order to Al
in Fig. C-3. 7. For this quantity, Crafty will set his price at P1 in Fig. C-3. 7.
At price P1 Discount is willing to buy an amount A2, as shown on the demand
model in the graph. For this larger purchase (A2), Crafty offers a lower price
P2' which encourages Discount to increase its purchase further. This will pro-
duce another cycle of adjustments until the point Ae is reached. This is true only

C-3. 14
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if buyer and seller maintain their strategies consistently.

But now suppose that the strategies are those shown in Fig. C-3. 8 where
the Crafty curve C is steeper than Discount's curve D. If Discount were now to
place an order for an amount, A1, which is less than the equilibrium purchase,
A e, the amounts purchased decrease, and Crafty will increase his price. At the
new price Discount reduces his sales and this cycle will be repeated until Crafty
will have priced himself out of business. If in any one week Discount were to
increase its order above Ae, the prices will continue to drop until Crafty loses
all profits. Clearly, the equilibrium is unstable in this case.

A QUANTITY PURCHASED

Fig. C-3. 4. Discount Stores' probable buying strategy.

A QUANTITY SOLD

Fig. C-3. 5. Crafty's probably selling strategy.
C-3. 15
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DISCOUNT (D)

Ae AMOUNT

Fig. C-3. 6. Equilibrium point for Crafty's and Discount's
strategies.
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Fig. C-3. 7. Stability of supply-demand point for Discount and Crafty.

will have priced himself out of business. If in any one week Discount were to
increase its order above Ae, the prices will continue to drop until Crafty loses
all profits. Clearly, the equilibrium is unstable in this case.
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Fig. C-3. 8. Unstable "supply-demand" point.
Examination of Figs. C-3. 7 and C-3. 8 shows that the stability criterion is

a very simple one in terms of our model. For stability, Discount's buying curve
must be steeper than Crafty's selling curve.

The strategy that we considered is not the only one possible. Mr. Crafty
may believe that when Discount increases his purchase, the toy sold out early
during the week and is apparently in great demand. He may, in fact, ask a
higher price. This is a less likely selling strategy and is shown in Fig. C-3. 9.

hirwimmitetel

PRICE

P

A
AMOUNT

Fig. C-3. 9. Mr. Crafty's unlikely selling strategy.
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Likewise, Discount may have observed that their customers have peculiar
buying habits; the customers believe that when an item is high priced, the item
must be of high quality and therefore they buy at an increased rate. This buying
curve is shown in Fig. C-3. 10.

PRICE

P

A

Fig. C-3.10. Discount Stores' unlikely buying strategy.

AMOUNT

Let us consider the stability of equilibrium when either Crafty or Discount
adopt an unlikely strategy. Suppose, for example, that Crafty adopts his un-
likely strategy and we have the case shown in Fig. C -3. 11. In this case a re-
duction to Al of Discount's order would cause a cyclic pattern of buying and sell-
ing. Can you explain why? The astute customer in Discount's store would notice
that for some reason the price of Crafty's toy fluctuated between P1 and P

2
every

two weeks. This cycle would in fact be another equilibrium state, in addition to
the point (Ae, Pe):

In Fig. C-3. 11 the slopes of the C and D curve are exactly the same magni-
tude but in opposite directions resulting in the cyclic behavior shown.

If the magnitude of the slope of the D curve be slightly greater than that of
the C curve, then the situation shown in Fig. C-3. 12 occurs. (The equal slope
case is shown in dotted lines for comparison. ) Fig. C-3. 12 indicates that point
Ae, Pe is stable.

Fig. C-3. 13 indicates that if the magnitude of the slope of the D curve is
less than that of the C curve, the equilibrium point Ae, Pe is unstable.

We have thus considered two special cases. Two other possibilities remain:
one in which Discount uses his unlikely strategy (Fig. C-3. 10) while Crafty uses
his likely strategy (Fig. C-3. 5) or both Discount and Crafty go to their unlikely
strategies.
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PRICE

P2

P1

Fig. C-3. 11. Supply-demand when Crafty adopts his urlilyel strategy,
and Discount adopts his likely strategy (equal slope magnitude)

PRICE

Pe

A1 Ae AMOUNT
Fig. C-3. 12. Stable supply-demand when Crafty adopts his unlikely

strategy, and Discount adopts his likely strategy (increased
slope magnitude for D)
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Fig. C -3. 13. Unstable supply-demand whe i Crafty adopts his
unlikely strategy, (decreased slope magnitude for D)

With a graphical analysis in the two remaining possibilities, similar to
those outlined above, it can be shown that for all cases, the stability criterion
depends upon a very simple rule: The equilibrium Ae, P , will be stable
if the magnitude of the slope of Discount's buying strategy excee%s that of Crafty's
selling strategy. Comparison of Fig. C -3. 12 and C -3. 3 will help to clarify the
meaning of this statement. With the use of a simple model we have thus dis-
covered a fact that might not otherwise be apparent, namely, the slope or rate
at which Craft and Discount chan e rice with res ect to the uantit urc=ed
determines whether or not the equili mum price is stable.

When the equilibrium point is stable, a slight disturbance will bring about
"forces, " in this case psychological or economic forces stemming from Dis-
count's and Crafty's business sense, which will tend to restore equilibrium. On
the other hand, for an unstable situation, a slight disturbance will bring about
forces that will drive the price even further away from equilibrium.

In closing this section, we again caution the reader that we are searching
for insight into the stability phenomenon, rather than for a standard procedure
that will predict the market-place happenings to within a few percent. Our model
omits all probabilistic considerations. It does not consider that Crafty and Dis-
count, will probably quickly guess each other's strategy and revise their original
strategies accordingly.

Nevertheless, situations such as those pictured in our graphs are observed
to occur in a free-market economy. The interested reader is referred to
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Economics, 6th edition, by-P. A. Samuelson, for a more extended discussion of
the so-called "dynamic cobweb" of Figs. C -3. 11 and C-3. 12 and its relation,
for example, to the statistics of corn and hogs and the observed " corn-hog
cycle. "

C-3. 5. INSTABILITY IN PHYSICAL SYSTEMS

The detailed, quantitative study of instability has its roots in the exploita-
tion of physical systems--bridges, buildings, electrical controls--for man's
ends. The wheel with an off-center weight is a simple example. On level ground,
two equilibrium conditions are obviously possible, as shown in Fig. C-3. 14.

WEIGHT

(a) Stable, weighted wheel (b) Unstable, weighted wheel
Fig. C-3.14.

From experience, we know that the equilibrium condition shown in Fig. C-3. 14
(a) 7s stable and that shown in part (b) of the figure is unstable. A slight disturb-
ance of the wheel when it is in the condition shown in (a) merely causes the wheel
to rock back and forth until it settles into its original position. On the other hand,
a slight disturbance of the wheel when the wheel is in condition (b) causes the
wheel to turn further from its original position so that the weight moves to the
bottom. The wheel then rocks back and forth until it comes to rest as in condi-
tion (a). Thus, state (a) represents stable equilibrium, while (b) depicts an un-
stable situation.

A similar situation exists in a less obvious form in the following situation.
In bridge construction, the road deck must be permitted to expand and contract
as the temperature changes. To permit this to occur safely, the bridge deck
design allows the bridge to vary its length at the points of support. In one case,
the bridge deck was supported by rockers placed under the two ends, as shown in
Fig. C-3. 15. While this bridge superstructure was in the process of construction
collapse occurred, which killed several workmen and incurred costly damages.
Collapse could have been avoided if the designer had been familiar with the prin-
ciple illustrated in Fig. C-3. 14. Here the bridge deck is supported by rockers
which can tilt as the length of the deck changes. This is shown in Fig. C-3. 15
and in detail in Fig. C-3.16. The bottom of the wedge shaped rocker is shown
as a portion of a circular arc. The circle, from which the arc is cut, is centered
at a point below the pin joint which connects the girders with the rocker. With no
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BRIDGE DECK
ROCKER

Fig. C-3. 15 Bridge deck on rockers to allow for thermal
expansion.

CENTER OF
CIRCLE

PIN JOINT

FULL CIRCLE

PORTION OF
CIRCLE

Fig. C-3. 16 Details of rocker and pin joint.

connection to the bridge deck the only forces acting on the rocker are its own
weight Mg, and the reaction force from the earth (Fig. C-3. 17). The weight Mg
acts from a point below the center of the circle, called the center of gravity of
the rocker. The rocker itself is stable. When the deck is pinned to it, the much
larger deck weight, W, acts above the center of the circle, to produce a situation
similar to that in Fig. C-3. 14 (b), where the weight of the wheel is negligible in
comparison to the applied weight W. It was the result of a condition of this type
that a small disturbance sent thousands of dollars of material and effort crashing
to the ground.

The effect of a disturbance on the equilibrium of the structure which has
just been described can be examined in detail. For simplicity, we assume that
the weight, of the deck, W can be considered as concentrated at a single point
(the center of gravity). In Fig. C-3. 18, (a) shows a slight disturbance of the
wheel when the center of gravity is below the center of wheel, (b) when it is at
the center of the wheel, and cc) when itl is above the center of the wheel. In all
cases there will be a reaction force W from the earth on the wheel.
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PIN JOINT

CENTER OF BOTTOM ARC

CENTER OF GRAVITY

Mg

Fig. C -3. 17 Forces on the unloaded rocker.

(a )

Fig. C-3. 18 Slightly disturbed wheel when the weight is
below, at, and above the wheel's center.

In both (a) and (c) the forces W and W1 create a torque which tends to turn
the wheel. In (a) the unbalance tends to rotate the wheel counterclockwise to re-
store it to a position where the center of gravity is at its lowest position. On tie
other hand, in (c) the unbalance tends to rotate the weight clockwise to turn the
wheel further from its original position. In the borderline or critical case (b),
a disturbance creates no torque.

This simple example, which can be readily demonstrated with rockers
made of wood and a wooden deck loaded with weights, displays the same character-
istics that we have met in our epidemiology and economic examples. In the stable
configuration (a), a disturbance away from the equilibrium state evokes torques
tn.at tend to restore the system to equilibrium. In the unstable state (c), the
evoked torques tend to drive the system further from the equilibrium state.

As mass is added to the bridge deck, both the magnitude of the effective
weight and the height of the center of gravity Fig. C-3. 18 is increased. With a
sufficient added mass, the vertical position of the center of gravity is above the
center of the wheel. At this point, the system passes suddenly and abruptly from
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a stable to an unstable condition.

An example of instability in a physical system which is of great engineering
importance is aerodynamic or wind induced instability of structures. This sort
of instability has come to the fore only relatively recently as the result of sophis-
ticated structural design of bridges and airplanes.

This effect can be illustrated with a small electric fan and a spring sup-
ported half-round section, (Fig. C-3. 19). When the air stream from the fan is
directed at the flat side of the section, oscillation of the section will begin and
grow with ever increasing amplitude until the section either strikes the Brame
or the springs collapse.

.-
--Ow

FAN
BLADE

SIDE VIEW

SPRING

HALF
ROUND
SECTION

FRONT VIEW

FRAME

Fig. C-3. 19 Sketch of model showing aerodynamically
induced instability.

This phenomenon can be explained. Wind tunnel tests show that the direction
of the wind-induced namic) forces on an object placed in an air stream vary
with the shape of the object. For a hemicylindrical object, which exposes its flat
surface to the air stream, the aerodynamic force always produces a component in
the same direction as the motion of the object. Hence, when the object is -moving
upward, the windinduced force tends to increase its upward motion; when it is
moving downard, the wind-induced force tends to increase its downward motion.
A slight disturbance of the hemicylinder which moves it from its position of rest
results in a gradual increase of this until movement of the hemicylinder strikes
the frame. It is interesting to note that when the air stream strikes the rounded
surface of the section, violent oscillation does not occur.

Aerodynamic instability has been the cause of bridge and airplane failures
in which millions of dollars and many human lives have been lost.
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C-3. 6 USES OF INSTABILITY

Thus far we have discussed the phenomena of stability and instability, with
examples in which instability represented an undesireable feature. We cannot,
however, draw general conclusions about the overall desireability of any phenomena.
In older societies the social structure is often stratified. Individuals are not per-
mitted to attain social positions which are considered as "above their natural sta-
tion in life . " A society of this type may be considered as highly stable and such
stability was considered important. In the colonies which preceded the establish-
ment of the United States, a handful of people were confronted with the task of
developing enormous natural resources. A growing population was beneficial.
In terms of the population model of Section B-1, this growth was a phenomenon
typical of instability. Under these conditions instability is a desireable feature.

As we have seen, a system which moves further from its initial state when
it is disturbed, is an unstable system. If this change is rapid, and produces a
sharp demarcation between the initial and final condition, it may have useful ap-
plications. Perhaps the simplest application of this behaviour is displayed by a
mechanical switch, such as a light switch, shown in Fig. C-3. 21. In Fig. C-3. 21
(a), the switch bar is in an unstable equilibrium. It is impossible to keep the
switch bar in this position. Instead, the switch bar prefers one of the two equili-
brium positions on either side, shown in (b) and (c). Thus by using the property
of an unstable equilibrium we produce a device that is definitely either on or off.

STOP
0 PIN

PIVOT

C -3.7 SUMMARY

0
STOP

0

Fig. C-3. 20 Schematic drawing of a light switch.

In creating systems to serve man's ends or in coping with the world as we
find it, it is not enough to seek a desired operating state. We must also concern
ourselves with the stability of such a state. If the state is unstable, a small dis-
turbance will initiate a rapid shift from the desireable state. Forces--physical,
psychological, economic, or biological--will be evoked which tend to move the
system away from the desired state. On the other hand, if the desired state is
stable, the evoked force will tend to restore the system to the desired state.

C-3. 25
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The phenomenon of stability surrounds us. Traditionally man has studied
stability in connection with physical systems where the stability phenomenon
could be examined in its simplest form. But as we have observed in such diverse
examples as epidemiology and economics, stability plays an important role in
much broader areas of human activity, although it is only recently that man has
learned to apply the quantitative techniques of modeling to study the phenomenon
of stability in other than physical systems.
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CHAPTER C-3 -- PROBLEMS

C-3. 1. Corresponding to the adage "skyscrapers beget skyscrapers" is the
saying "superhighways beget superhighways. " Explain the meaning of
this saying. Interpret it as an instability phenomenon, giving some of
the factors that have led to the accelerated rate of superhighway con-
struction.

C-3. 2. "Homogeneous grouping" is a plan for increasing the efficiency of educa-
tion. According to this plan, students are grouped in separate classes
according to ability. Proponents of the plan envision an equilibrium state
where each pupil performs at his maximum ability, and is neither held
back by the slower students nor frustrated by faster students. Opponents
claim this equilibrium is unstable. They say, "Suppose for some reason,
that a student in the fastest class performs slightly below his ability. He
is then assigned to a second class which is slower and where he is bored,
after which. . ." Finish the opponent's argument. State reasons why you
agree or disagree with it.

C -3. 3. Two nations, A and B, are glowering at each other, each threatening war.
The commanding general of nation A reads his agent's intelligence reports
each week and for the next week calls up an additional number of troops
equal to 10% of B's strength. The commanding general of nation B does
likewise. Formulate this situation as a system of equations, letting NA

and NB be the number of A and B's troops (ans. ANA = 0. 10NB, ANB

0. 10NA).

C-3. 4. Assume in problem C-3. 4 that A and B each start with 1, 000 troops at
the border. How many troops will each have after 10 weeks? (ans. 2, 356).

C-3. 5. Calculate the course of an epidemic for the simple model that does not
include the effect of recovery. Assume s = 150, i = 1, and fi = 0. 02.

C-3. 6. Calculate the course of the epidemic given in Table C-3. 2 under the
assumption that fr = 0. 2.

C -3. 7. What is the critical number of susceptible if fi = 103 and fr = 0. 6?

C-3. 8. Suppose you had determined fi and f in the epidemic model by examining
statistics for a smallpox epidemic in Asia. Could these values be used to
predict the course of a smallpox epidemic in New York City? Give reasons
for your answer.

C-3. 9. Which is more effective as far as the critical number of susceptibles Scr
is concerned - increasing the recovery-isolation factor fr by 50% or de
creasing the factor fi by 50%? (Decreasing fi by 50%)..

C -3. 10. Assume that you are the president of Discount Stores. You believe that it
is important to present an image of stable prices. You.find that Crafty's
toy prices have been fluctuating widly. The accounting department has
provided you with the following data:

C-3.27
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Date Crafty's Price No. Bought

7/1 $2. 00 250
7/8 2. 50 188
7/15 1. 88 265
7/22 2. 65 169
7/29 1. 69 289

How would you instruct your purchasing department in order to stabilize Crafty's
price?

C-3. 11. Discuss the stability of the following Crafty-Discount supply-demand
curve.

PRICE

Problem C-3. 11.

AMOUNT

C-3.12. Find the equilibrium points and discuss the stability of the following
Crafty-Discount supply-demand curves.

PRICE

Probelm C-3. 12.
C-3. 28

AMOUNT


